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a b s t r a c t

We analyze matching and non-matching domain decomposition methods for the numer-
ical approximation of the mixed diffusion equations. Special attention is paid to the case
where the solution is of low regularity. Such a situation commonly arises in the presence of
three ormore intersectingmaterial components with different characteristics. The domain
decomposition method can be non-matching in the sense that the traces of the finite
element spacesmay not fit at the interface between subdomains.We provewell-posedness
of the discrete problem, that is solvability of the corresponding linear system, provided
two algebraic conditions are fulfilled. If moreover the conditions hold independently of the
discretization, convergence is ensured.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The diffusion equation can model different physical phenomena such as Darcy’s law, Fick’s law or the neutron diffusion.
When formulated as a mixed system of equations, it allows to compute both the solution and its gradient. Hence, from a
variational point of view, two approaches coexist. One uses either the primal variational formulation to focus on the solution;
or the dual-mixed variational formulation to focus instead on the gradient of the solution.

The numerical analysis of domain decomposition methods for the mixed diffusion equation has already been studied
for Darcy’s law, see e.g. [1–4], and also for Fick’s law and the neutron diffusion equation, see e.g. [5–7]. In order to handle
non-matching discretizations at the interface of the subdomains, a Lagrange multiplier can be introduced. This technique
is known as the mortar finite element method [8], among its predecessors one can cite the hybrid finite element method
(see [9] for the diffusion equation). From an algebraic point of view, the linear system obtained after discretization is similar
to the one of the Schur complement method.

In this paper, we focus on matching and non-matching domain decompositions of the (dual) mixed formulation. We put
special emphasis on the so-called low-regularity solutions. For the diffusion equation, we recall that the solution always
belongs to the Sobolev space H1. However, it may happen that the a priori regularity result (even for smooth, locally
supported data) only guarantees that the solution is piecewise H1+r , where r > 0 can be arbitrarily small: one says that
the problem is H1+r -regular. On the other hand, in the above mentioned references, when the regularity issue is explicitly
taken into account, it is assumed that the solution is at least:
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• piecewise H1+r with r > 1/4 in [7];
• piecewise H1+r with r > 1/2 in [1,2,4];
• piecewise H1+r with r = 1 in [3,5].

So one aim of our paper is to devise a method that can be fully justified for a problem that is H1+r -regular, with an exponent
r > 0 that can be arbitrarily small. In other words, we address the ‘‘technicalities’’ needed for the design of a theory that
handles low-regularity solutions. To reach that end, one has tomodify the existingmathematical and variational frameworks.
The other aim is to derive abstract (algebraic) conditions after discretization, to guarantee well-posedness of the discrete
problem, and convergence.

The outline of the paper is as follows. In Section 2, we introduce the notations, geometry and Hilbert spaces to define the
problem setting. In particular, we will make use of vector-valued functions with L2-jump of normal traces on the interface
between subdomains. Then, in Section 3, we write the continuous equations and the associated variational formulations
of the mixed diffusion equations. We also define the low-regularity case. We next propose an equivalent multi-domain
formulation,which fits into the category of domain decompositionmethods. Thewell-posedness of themixed,multi-domain
formulation is studied in Section 4 in the continuous case and in Section 5 in the discrete case. In the discrete case, we exhibit
two abstract algebraic conditions which imply the existence of a discrete inf–sup condition. This inf–sup condition ensures
well-posedness of the discrete problem, and also convergence when it is uniform. In addition, these algebraic conditions
drive the choice of the space of the Lagrange multipliers. We give numerical illustrations in Section 6. Finally, we draw some
conclusions and give perspectives in Section 7.

2. Geometry, Hilbert spaces and notations

Throughout the paper, C is used to denote a generic positive constant which is independent of the meshsize, the
triangulation and the quantities/fields of interest. We also use the shorthand notation A ≲ B for the inequality A ≤ CB,
where A and B are two scalar quantities, and C is a generic constant. Respectively, A ≂ B for the inequalities A ≲ B and B ≲ A.

Vector-valued (resp. tensor-valued) function spaces are written in boldface character (resp. blackboard bold characters).
Given an open set O ⊂ Rd, d = 1, 2, 3, we use the notation (·|·)0,O (resp. ∥ · ∥0,O) for the L2(O) and L2(O) := (L2(O))d scalar
products (resp. norms). More generally, (·|·)s,O and ∥ ·∥s,O (resp. |·|s,O) denote the scalar product and norm (resp. semi-norm)
of the Sobolev spaces Hs(O) and Hs(O) := (Hs(O))d, for s ∈ R (resp. for s > 0).

If moreover the boundary ∂O is Lipschitz, n denotes the unit outward normal vector field to ∂O. Finally, it is assumed that
the reader is familiar with vector-valued function spaces related to the diffusion equation, such as H(div ;O), H0(div ;O) etc.

We let R be a bounded, connected and open subset of Rd, having a Lipschitz boundary which is piecewise smooth. We
split R into N open disjoint parts, or subdomains, (Ri)i=1,N with Lipschitz, piecewise smooth boundaries: R = ∪i=1,NRi
and the set {Ri}i=1,N is called a partition ofR. For a field v defined overR, we shall use the notations vi = v|Ri , for i = 1,N .

Given a partition {Ri}i=1,N of R, let us introduce now function spaces with piecewise regular elements:

PHs(R) =
{
ψ ∈ L2(R) |ψi ∈ Hs(Ri), i = 1,N

}
, s > 0;

PH(div ,R) =
{
q ∈ L2(R) | qi ∈ H(div ,Ri), i = 1,N

}
;

PW 1,∞(R) =
{
ψ ∈ L∞(R) |ψi ∈ W 1,∞(Ri), i = 1,N

}
.

Given a partition {Ri}i=1,N ofR, we denote byΓij the interface between two subdomainsRi andRj, for i ̸= j: if theHausdorff
dimension ofRi ∩Rj is d−1, then Γij = int(Ri ∩Rj); otherwise, Γij = ∅. By construction, Γij = Γji. We define the interface
ΓS , respectively the wirebasket ∂ΓW by

ΓS =

N⋃
i=1

N⋃
j=i+1

Γij, ∂ΓW =

N⋃
i=1

N⋃
j=i+1

∂Γij.

When d = 2, the wirebasket consists of isolated crosspoints. When d = 3, the wirebasket consists of open edges and
crosspoints. Introduce the subset of indices IS := {i ∈ {1, . . . ,N} | ∂Ri ∩ ΓS = ∂Ri} and, for i = 1,N , the open set
Γi = ∂Ri \ ΓS . Let us define function spaces with zero boundary condition, for i = 1,N:

H1
0,Γi (Ri) =

{
ψ ∈ H1(Ri) |ψ|Γi = 0

}
;

PH1
0 (R) =

{
ψ ∈ L2(R) |ψi ∈ H1

0,Γi (Ri), i = 1,N
}
.

When Γij ̸= ∅, let H1/2
Γij

be the set of H1/2(Γij) functions whose continuation by 0 to ∂Ri belongs to H1/2(∂Ri). One can prove
that H1/2

Γij
= H1/2

Γji
.

For p ∈ PH(div ,R), let us set [p · n]ij :=
∑

k=i,jpk · nk|Γij the jump of the normal component of p on Γij, when Γij ̸= ∅.
[p · n]ij is well defined in (H1/2

Γij
)′ the dual space of H1/2

Γij
(see e.g. [10]). The global jump [p · n] of the normal component on

the interface is defined by:

[p · n]|Γij := [p · n]ij, for i, j = 1,N, i < j.

By definition, it holds [p · n] ∈
∏

i<j(H
1/2
Γij

)′.
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