
Please cite this article in press as: J.C. Araujo-Cabarcas, C. Engström,On spurious solutions in finite element approximations of resonances in open systems,
Computers and Mathematics with Applications (2017), http://dx.doi.org/10.1016/j.camwa.2017.07.020.

Computers and Mathematics with Applications ( ) –

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

On spurious solutions in finite element approximations of
resonances in open systems
Juan Carlos Araujo-Cabarcas *, Christian Engström
Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden

a r t i c l e i n f o

Article history:
Received 11 April 2017
Received in revised form 4 July 2017
Accepted 11 July 2017
Available online xxxx

Keywords:
Scattering resonances
Lippmann–Schwinger equation
Nonlinear eigenvalue problems
Acoustic resonator
Dielectric resonator
Bragg resonator

a b s t r a c t

In this paper, we discuss problems arising when computing resonances with a finite
element method. In the pre-asymptotic regime, we detect for the one dimensional case,
spurious solutions in finite element computations of resonances when the computational
domain is truncated with a perfectly matched layer (PML) as well as with a Dirichlet-to-
Neumann map (DtN). The new test is based on the Lippmann–Schwinger equation and we
use computations of the pseudospectrum to show that this is a suitable choice. Numerical
simulations indicate that the presented test can distinguish between spurious eigenvalues
and true eigenvalues also in difficult cases.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Open resonators are common in many applications including acoustic properties of musical instruments, laser cavities,
and multilayer X-ray resonators [1–3]. A widely applicable technique to terminate the computational domain in resonance
as well as in scattering problems is a perfectly matched layer (PML). It is possible to prove that the Galerkin method
converges (in gap), which implies that in the asymptotic regime there are no Galerkin eigenvalues that are unrelated to
the spectrum of the original operator. However, under realistic conditions it is very costly to use sufficiently finemeshes and
most computations are therefore done in the pre-asymptotic regime. The PML problem is highly non-normal and there are
frequently numerous eigenvalues that are unrelated to the spectrum of the original operator. These eigenvalues are called
spurious eigenvalues and they are a major challenge in engineering applications. The origin of these spurious eigenvalues is
spectral instability [4–6]. For example, even if the inequality ∥Au − k2u∥ < ϵ∥u∥ holds for a very small ϵ, k2 may still not be
close to the spectrum of A.

A common approach that aims to detect spurious solutions is to compute numerical approximations with several sets of
PML parameters. Then a perturbation argument is used to distinguish true resonances from spurious solutions [7–9]. This
requires several computations of the eigenvalues for different parameters. The basic assumption in this approach is that
spurious eigenvalues react more strongly to perturbations than approximations to resonances. However, eigenvalues may
also react strongly due to an insufficient approximation and it is unclear howmuch an eigenvalue shouldmove to bemarked
as a spurious eigenvalue.

In this paper, we propose a new test based on a volume integral formulation of the problem called the Lippmann–
Schwinger equation and argue that this is a suitable choice. This test is applied to numerical solutions obtained with a finite
elementmethodwhere the computational domain is truncatedwith a PML aswell aswith a DtNmap. Numerical simulations
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indicate that the presented test can distinguish between spurious eigenpairs and true eigenpairs also in complicated
cases when the spurious solutions mix with true approximations of resonances. The new test determines if a computed
eigenvalue numerically is in an ϵ-pseudospectrumof the integral operator and the corresponding vector is an ϵ-pseudomode.
The Lippmann–Schwinger equation is frequently used in acoustic and electromagnetic scattering theory [10] and it has
previously been used directly to determine resonances [7,11,12]. The resonant modes grow exponentially at infinity but the
integration in the Lippmann–Schwinger equation is only over the resonator where the solutions are well behaved. This is
a computationally significant advantage in particular for large structures that contain many air holes. However, the direct
approach with an integral equation is demanding since it results in a nonlinear eigenvalue problem (NEP), matrices are full,
and each evaluation (e.g. solver iteration) requires a matrix assembly.

An advantage with the DtN map in one dimension is that the resulting eigenvalue problem only has a quadratic
nonlinearity and the formulation contains no free parameters. The PML has the advantage that the resulting eigenvalue
problem is linear. However, the method contains several parameters, which influence the computational result.

For the DtN formulation, we use a block operator representation and apply standard techniques to prove an estimate for
the gap between the discrete and continuous eigenspaces.Moreover, based on the results [13,14]we state the corresponding
estimate for the gap in the PML setting. Convergence in gap proves for the DtN formulation that no spurious solutions exist
when the finite element space is large enough but the rate of convergence depends critically on resolvent norms that may
be very large. The same conclusions hold in the PML formulation with the additional requirement that the PML layer is thick
enough [14]. The eigenvalue problemwith a truncated PMLwill have more eigenvalues inside a given region in the complex
plane compared with a DtN formulation of the same problem. We introduce a DtN for the truncated PML and determine a
region in the complex plane where it is possible to obtain convergence for given PML parameters. Then, we derive a new
estimate of the difference between a resonance and an eigenvalue of the finite PML problem. Finally, the integral equation
based test is then used to detect spurious solutions in the DtN and PML formulations. The numerical examples indicate that
the test can detect spurious eigenvalues in solutions computedwith relatively coarse discretizations (computedwith h-FEM)
as well as for fine discretizations obtained using p-FEM.

The results in this paper are stated for the one-dimensional case, which for the considered test problems, it is possible
to reach the asymptotic regime and compute resonances without spurious solutions on a standard computer. This is an
advantage, since in this case it is possible to evaluate numerically the performance of the new filtering technique. The filtering
process can be extended to higher dimensions and it will then provide a new practical tool formany challenging applications
in physics and engineering.

A procedure to efficiently compute resonances with the PML or DtN formulation is then: (i) Use a coarse discretization
and e.g. ARPACK with several shifts to compute a selection of Galerkin eigenvalues. (ii) Use the new filtering process to sort
out approximations of interest and reduce the number of shifts. (iii) Use hp-adaptivity, e.g. a technique similar to [15] for
PML and [16] for DtN, to reduce the errors in the target eigenvalues. (iv) Check that the new eigenpairs significantly reduce
the residual in the Lippmann–Schwinger equation.

2. Convergence of Galerkin spectral approximations for the DtN and PML formulations

In this section we introduce the DtN and PML formulations used to truncate the exterior domains and prove convergence
of theGalerkinmethod. Our approach to analyze theDtN formulation follow [17,18] andwe state convergence results proved
by Bramble and Osborn, et al. [19]. The results stated for the infinite PML formulation are contained in [14]. For the finite
PML problem we introduce a DtN map, which is used to derive a new error estimate and reference solutions.

2.1. Computing resonances with the DtN map

Resonance problems are closely related to the underlying scattering problem andwe begin therefore with the Helmholtz
scattering problem on R [20]. Consider the scattering of a given incoming wave ui by an obstacle n with support in
supp (n2

− n2
0) ⊂ (−d, d). Then the outgoing radiation condition on the scattered wave us is

u′

s(−x0) = −ik n0 us(−x0), u′

s(x0) = ik n0 us(x0), x0 ≥ d (2.1)

and a function that satisfies (2.1) is called outgoing [20]. The scattering problem is then: Find for given k2 with ℑk2 ≥ 0 the
total wave H2(R) ∋ u = ui + us with us outgoing, that satisfies

− u′′
− k2n2u = 0. (2.2)

The condition (2.1) on us ensures uniqueness of the solution [21, p. 348], [20].
For x ̸∈ Ωd and given non-zero k ∈ C, Eq. (2.2) has the linearly independent solutions e±ikn0x ∈ H2

loc(R). For x ≥ d, we
have that us(x) = eikn0x is the outgoing solution and us(x) = e−ikn0x is called the incoming solution. Similarly, for x ≤ −d the
function us(x) = e−ikn0x is outgoing and us(x) = eikn0x is the incoming solution.

The standard definition of resonances as the poles of the analytical continuation of the resolvent operator is discussed
in Section 4. However, these resonances can also be determined by solving a nonlinear eigenvalue problem, where the
nonlinearity comes from the Dirichlet-to-Neumann (DtN) map [3,22]. In one space dimension, the problem formulation
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