Computers and Mathematics with Applications ■ (■■■) ■■■-■■■

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A regularity criterion for a generalized Hall-MHD system

Jishan Fan a, Bessem Samet b, Yong Zhou c,*

- ^a Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, PR China
- ^b Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- ^c School of Mathematics (Zhuhai), Sun Yat-Sen University, Zhuhai 519082, Guangdong, PR China

ARTICLE INFO

Article history: Received 5 May 2016 Received in revised form 7 July 2017 Accepted 11 July 2017 Available online xxxx

Keywords: Regularity criterion Generalized Hall-MHD Gagliardo-Nirenberg inequality

ABSTRACT

This paper proves a regularity criterion for a 3D generalized Hall-MHD system in terms of velocity gradient in negative Besov spaces.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the following 3D generalized Hall-MHD system:

$$\partial_t u + u \cdot \nabla u + \nabla \left(\pi + \frac{1}{2} |b|^2 \right) + (-\Delta)^{\alpha} u = b \cdot \nabla b, \tag{1.1}$$

$$\partial_t b + u \cdot \nabla b - b \cdot \nabla u + (-\Delta)^{\beta} b + \operatorname{rot}(\operatorname{rot} b \times b) = 0, \tag{1.2}$$

$$\operatorname{div} u = \operatorname{div} b = 0, \tag{1.3}$$

$$(u,b)(\cdot,0) = (u_0,b_0) \text{ in } \mathbb{R}^3.$$
 (1.4)

Here u, π and b denote the velocity, pressure and magnetic field of the fluid, respectively. $0 < \alpha, \beta$ are two constants. The fractional Laplacian operator $(-\Delta)^{\alpha}$ is defined through the Fourier transform, namely, $(-\Delta)^{\alpha}f(\xi) = |\xi|^{2\alpha}\hat{f}(\xi)$.

The applications of the Hall-MHD system cover a very wide range of physical objects, for example, magnetic reconnection in space plasmas, star formation, neutron stars, and geo-dynamo.

When the Hall effect term rot (rot $b \times b$) is neglected, the system (1.1)–(1.4) reduces to the well-known generalized MHD system, which has received many studies [1-4].

When $\alpha = \beta = 1$, the system (1.1)–(1.4) reduces to the well-known Hall-MHD system. The paper [5] gave a derivation of the isentropic Hall-MHD system from a two-fluid Euler-Maxwell system. Chae-Degond-Liu [6] proved the local existence of smooth solutions. Chae and Schonbek [7] showed the time-decay and some regularity criteria were proved in [8,9].

Local well-posedness is established in [10] when $0 < \alpha \le 1$ and $\frac{1}{2} < \beta \le 1$ even for u_0 and b_0 in different spaces.

When $\frac{3}{4} \le \alpha < \frac{5}{4}$ and $1 \le \beta < \frac{7}{4}$, Jiang and Zhu [11] prove the following regularity criteria

$$\nabla b \in L^{t}(0,T;L^{s}) \quad \text{with } \frac{2\beta}{t} + \frac{3}{s} \le 2\beta - 1, \qquad \frac{3}{2\beta - 1} < s \le \infty, \tag{1.5}$$

E-mail addresses: fanjishan@njfu.com.cn (J. Fan), zhouyong3@mail.sysu.edu.cn (Y. Zhou).

http://dx.doi.org/10.1016/j.camwa.2017.07.024

0898-1221/© 2017 Elsevier Ltd. All rights reserved.

Corresponding author.

and one of the following two conditions

$$u \in L^{p}(0, T; L^{q}) \quad \text{with } \frac{2\alpha}{p} + \frac{3}{q} \le 2\alpha - 1, \qquad \frac{3}{2\alpha - 1} < q \le \frac{6\alpha}{2\alpha - 1},$$
 (1.6)

or

$$\Lambda^{\alpha} u \in L^{p}(0,T;L^{q}) \quad \text{with } \frac{2\alpha}{p} + \frac{3}{q} \le 3\alpha - 1, \qquad \frac{3}{3\alpha - 1} < q \le \frac{6\alpha}{3\alpha - 1}. \tag{1.7}$$

When $1 \le \alpha < \frac{5}{4}$ and $1 \le \beta < \frac{7}{4}$, Ye [12] showed the following regularity criterion

$$u \in L^p(0, T; L^q)$$
 and $\nabla b \in L^\ell(0, T; L^k)$,

where p, q, ℓ and k satisfy the relation

$$\frac{2\alpha}{p} + \frac{3}{q} \le 2\alpha - 1, \qquad \frac{2\beta}{p} + \frac{3}{q} \le 2\beta - 1, \qquad \frac{2\beta}{\ell} + \frac{3}{k} \le 2\beta - 1, \tag{1.8}$$

and

$$\max\left(\frac{3}{2\alpha-1},\frac{3}{2\beta-1}\right) < q \le \infty, \qquad \frac{3}{2\beta-1} < k \le \infty.$$

For other related results, we refer to [13–15] and references therein.

Very recently, He-Ahmad-Hayat-Zhou [16] show the following regularity criterion

$$rot \, u \in L^{\frac{2\alpha}{2\alpha - 2 - s_1}}(0, T; \dot{B}_{\infty, \infty}^{-s_1}) \quad \text{with } 0 < s_1 < \min(1, 2\alpha - 2), \tag{1.9}$$

when $1 < \alpha = \beta < \frac{7}{4}$, and the following regularity criterion

$$(-\Delta)^{\frac{m-1}{2}} \operatorname{rot} u \in L^2(0, T; L^2) \quad \text{with } m > \frac{7}{2},$$
 (1.10)

as $\alpha = \beta = 1$. As far as we know, it is the first work to establish regularity criteria only on the velocity field u. The aim of this paper is to prove a new regularity criterion, we will prove the following theorem.

Theorem 1.1. Let $0 < \alpha < \frac{5}{4}$ and $\frac{7}{4} \le \beta < 3$ and $u_0, b_0 \in H^s$ with $s \ge 2$ and $\text{div } u_0 = \text{div } b_0 = 0$ in \mathbb{R}^3 . If ∇u satisfy

$$\nabla u \in L^{\frac{2\alpha}{2\alpha - \gamma}}(0, T; \dot{B}_{\infty, \infty}^{-\gamma}), \quad \text{with } 0 < \gamma < 2\alpha, \tag{1.11}$$

then the solution (u, b) can be extended beyond T.

In the following proofs, we will use the following bilinear product and commutator estimates due to Kato-Ponce [17]:

$$\|\Lambda^{s}(fg)\|_{l^{p}} < C(\|\Lambda^{s}f\|_{l^{p_{1}}}\|g\|_{l^{q_{1}}} + \|f\|_{l^{p_{2}}}\|\Lambda^{s}g\|_{l^{q_{2}}}), \tag{1.12}$$

$$\|\Lambda^{s}(fg) - f\Lambda^{s}g\|_{L^{p}} \le C(\|\nabla f\|_{L^{p_{1}}} \|\Lambda^{s-1}g\|_{L^{q_{1}}} + \|\Lambda^{s}f\|_{L^{p_{2}}} \|g\|_{L^{q_{2}}}), \tag{1.13}$$

with s > 0, $\Lambda := (-\Delta)^{\frac{1}{2}}$ and $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{q_1} = \frac{1}{p_2} + \frac{1}{q_2}$. We will also use the improved Gagliardo–Nirenberg inequalities [18–20]:

$$\|\nabla u\|_{L^{3}}^{3} \leq C\|\nabla u\|_{\dot{B}_{\infty,\infty}^{-\gamma}}\|\nabla u\|_{\dot{u}^{\frac{\gamma}{2}}}^{2},\tag{1.14}$$

$$\|\nabla u\|_{L^{\frac{2(k+\gamma+\alpha-1)}{\gamma}}} \le C\|\nabla u\|_{\dot{B}^{-\gamma}_{\infty,\infty}}^{\frac{k+\alpha-1}{k+\gamma+\alpha-1}} \|\nabla u\|_{\dot{H}^{k+\alpha-1}}^{\frac{\gamma}{k+\gamma+\alpha-1}},\tag{1.15}$$

$$\|\Lambda^{k}u\|_{L^{\frac{4(k+\gamma+\alpha-1)}{2k+\gamma+2\alpha-2}}} \le C\|\nabla u\|_{\dot{B}^{-\gamma}_{\infty,\infty}}^{\frac{\gamma}{2(k+\gamma+\alpha-1)}} \|\Lambda^{k}u\|_{\dot{B}^{-\gamma}_{\infty,\infty}}^{\frac{2k+\gamma+2\alpha-2}{2(k+\gamma+\alpha-1)}}, \tag{1.16}$$

for k > 0, $0 < \gamma < \alpha$. Some more efficient inequalities was used in [21–23].

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, we only need to prove a priori estimates. First, testing (1.1) by u and using (1.3), we see that

$$\frac{1}{2}\frac{d}{dt}\int |u|^2dx + \int |\Lambda^{\alpha}u|^2dx = \int (b\cdot\nabla)b\cdot udx.$$

Testing (1.2) by b and using (1.3), we find that

$$\frac{1}{2}\frac{d}{dt}\int |b|^2 dx + \int |\Lambda^{\beta}b|^2 dx = \int (b \cdot \nabla)u \cdot b dx.$$

Download English Version:

https://daneshyari.com/en/article/6892381

Download Persian Version:

https://daneshyari.com/article/6892381

<u>Daneshyari.com</u>