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a b s t r a c t

A non-standard finite difference scheme is proposed to solve a delayed and diffusive
viral infection model with general nonlinear incidence rate. The results show that the
discrete model preserves the positivity and boundedness of solutions in order to ensure
the well-posedness of the problem. Moreover, this method preserves all equilibria of the
original continuous model. By constructing Lyapunov functionals, we show that the global
stability of equilibria is completely determined by the basic reproduction number ℜ0,
which implies that the proposed discrete model can efficiently blue preserve the global
stability of equilibria of the corresponding continuous model. Numerical experiments are
carried out to support the theoretical results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, there has been a great effort in the mathematical modeling of within-host virus dynamics
models. These models have been used to describe the dynamics inside the host of various infectious diseases such as HIV,
HCV, HBV, HTLV, as well as the flu or even the malaria parasite. Since samples cannot always be taken too frequently from
patients, or because detection techniques of the virus may not be accurate, thus testing specific hypotheses based on clinical
data is a challengeable task. This justifies the central role played bymathematical models in this area. The classical model for
within-host virus dynamics is a system which includes three ordinary differential equations [1,2]. For better understanding
of the dynamics of these infections, many extended mathematical models have been proposed by using different kinds of
differential equations [3–11] and references therein. For example, Yang et al. [9] studied the following model⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂T (x, t)
∂t

= λ − dT (x, t) − β1T (x, t)V (x, t) − β2T (x, t)I(x, t),

∂ I(x, t)
∂t

= β1T (x, t)V (x, t) + β2T (x, t)I(x, t) − δI(x, t),

∂V (x, t)
∂t

= D△V (x, t) + pI(x, t) − cV (x, t).

(1.1)

Here T (x, t), I(x, t) and V (x, t) denote the densities of uninfected cells, infected cells and free virus at position x at time t ,
respectively. λ is the recruitment rate of the uninfected cells. β1 is the virus-to-cell infection rate. d, δ and c are death rates
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of uninfected cells, infected cells and free viruses, respectively. p is the recruitment rate for free viruses. D is the diffusion
coefficient and ∆ is the Laplacian operator.

However, there is no delay in system (1.1). Actually, in modeling of many biological processes, time delays are usually
introduced for the purpose of accurate representations of the phenomena. For example, intracellular time delays were
incorporated into mathematical models in viral dynamics [3–8,10,12–15] and references therein. On the other hand, the
bilinear incidence rate is a simple description of the infection in system (1.1). As mentioned in [14,15], a general incidence
ratemay help us to gain the unification theory by the omission of unessential details. Hence, inspired by the aforementioned
work, in this paper we propose the following model:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂T (x, t)
∂t

= λ − dT (x, t) − β1T (t)f (V (x, t)) − β2T (x, t)g(I(x, t)),

∂ I(x, t)
∂t

= e−µ1τ1 (β1T (x, t − τ1)f (V (x, t − τ1)) + β2T (x, t − τ1)g(I(x, t − τ1))) − δI(x, t),

∂V (x, t)
∂t

= D△V (x, t) + pe−µ2τ2 I(x, t − τ2) − cV (x, t).

(1.2)

Here µ1 represents the death rate for infected but not yet virus-producing cells. τ1 represents the latent delay, i.e. the time
period from being infected to become productive infected cells. Therefore, the probability of surviving from time t − τ1 to
time t is e−µ1τ1 . The probability of survival of immature virions is given by e−µ2τ2 and the average life time of an immature
virus is given by 1

µ2
, where τ2 represents the time necessary for the newly produced virions to become mature. In general,

we have d < δ. The other parameters have the samemeanings as in system (1.1). Here, the incidences are assumed to be the
nonlinear responses to the concentrations of virus particles and infected cells, taking the forms β1Tf (V ) and β2Tg(I), where
f (V ) and g(I) denote the force of infection by virus particles and infected cells and satisfy the following properties [16]:

f (0) = g(0) = 0, f ′(V ) > 0, g ′(I) > 0 f ′′(V ) ≤ 0, g ′′(I) ≤ 0. (A1)

Based on condition (A1), it follows from the Mean Value Theorem that

f ′(V )V ≤ f (V ) ≤ f ′(0)V , g ′(I)I ≤ g(I) ≤ g ′(0)I, for I, V ≥ 0. (A2)

Epidemiologically, condition (A1) indicates that: (i) the disease cannot spread if there is no infection; (ii) the incidences
β1Tf (V ) and β2Tg(I) become faster as the densities of the virus particles and infected cells increase; (iii) the per capita
infection rates by virus particles and infected cells will slow down due to certain inhibition effect since (A2) implies that
( f (V )

V )′ ≤ 0 and ( g(I)I )′ ≤ 0.
Obviously, the incidence rate with condition (A1) contains the bilinear and the saturation incidences. Hence, the system

(1.1) can be regarded as a special case of (1.2). In this paper, we consider system (1.2) with initial conditions as follows

T (x, s) = φ1(x, s) ≥ 0, I(x, s) = φ2(x, s) ≥ 0,
V (x, s) = φ3(x, s) ≥ 0, (x, s) ∈ Ω̄ × [−τ , 0], (1.3)

and homogeneous Neumann boundary conditions
∂V
∂n

= 0, t > 0, x ∈ ∂Ω, (1.4)

where τ = max{τ1, τ2} and Ω is a bounded domain in Rn with smooth boundary ∂Ω , and ∂
∂n denotes the outward normal

derivative on ∂Ω .
Generally, the exact solution for a system like (1.1) is difficult or even impossible to be determined. Hence, researchers

seek numerical ones instead. However, how to select the proper discrete scheme so that the global dynamics of solutions
of the corresponding continuous models can be efficiently preserved is still an open problem [17]. Actually, Mickens has
made an attempt in this regard, by proposing a robust non-standard finite difference (NSFD) scheme [18], which has been
widely employed in the study of different epidemic models [19–25]. For example, Yang et al. [9] applied the NSFD scheme
to discretize system (1.1) and found that the global dynamics of the discrete model are consistent with the original system.
Motivated by the work of [9,18], we apply the NSFD scheme to discretize system (1.2) and obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Tm
n+1 − Tm

n

∆t
− = λ − dTm

n+1 − β1Tm
n+1f (V

m
n ) − β2Tm

n+1g(I
m
n ),

Imn+1 − Imn
∆t

= e−µ1τ1
(
β1Tm

n−m1+1f (V
m
n−m1

) + β2Tm
n−m1+1g(I

m
n−m1

)
)
− δImn+1,

Vm
n+1 − Vm

n

∆t
= D

Vm+1
n+1 − 2Vm

n+1 + Vm−1
n+1

(∆x)2
+ pe−µ2τ2 Imn−m2+1 − cVm

n+1.

(1.5)

Here we set x ∈ Ω = [a, b]. Let ∆t > 0 be the time step size and ∆x =
b−a
N be the space step size with N is a positive

integer. Assume that there exist two integers m1,m2 ∈ N with τ1 = m1∆t, τ2 = m2∆t . Denote the mesh grid point as
{(xm, tn),m = 0, 1, 2, . . . ,N, n ∈ N} with xm = a + m∆x and tn = n∆t . At each point, we denote approximations of
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