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a b s t r a c t

A nonlinear difference scheme is considered for the two-dimensional Rosenau–Burgers
equation. Some priori estimates, existence and uniqueness of the difference solution have
been shown. A second-order convergence in the uniform norm and stability are proved.
Also a convergent iterative algorithm is presented. All results are obtained without any
restrictions on the meshsizes. At last numerical experiments are carried out to support the
theoretical claims.
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1. Introduction

A nonlinearwave phenomenon is an important area of scientific research. There aremathematicalmodelswhich describe
the dynamic of wave behaviors such as the KdV equation, the Rosenau equation, and many others. The KdV equation cannot
explain the wave–wave and wave–wall interactions for the model of the dynamics of compact discrete systems. Therefore,
Rosenau [1,2] presented the novel model, which is more suitable than the KdV equation, as follows:

ut + uxxxxt + ux + uux = 0. (1.1)

The theoretical results on existence, uniqueness and regularity of the solution for (1.1) have been investigated by Park [3].
But it is difficult to find the analytical solution for (1.1). Since then, much work has been done on the numerical methods for
(1.1), see [4–8] and the references therein.

The dynamics of dispersive shallowwaterwaves is extensively studied by various knownmodels. These are the Rosenau–
KdV equation [9–12] and Rosenau-RLW equation [13–16], Rosenau–Kawahara equation [17,18], Rosenau–Kawahara-RLW
equation [19,20], and many others.

On the other hand, for the further consideration of the dissipation in space for the dynamic system, such as the
phenomenon of bore propagation and the water waves, the viscous term −αuxx needs to be included:

ut + uxxxxt − αuxx + ux + uux = 0. (1.2)
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This equation is usually called the Rosenau–Burgers equation. The behavior of the solution to Eq. (1.2) has been well
studied for the past years [21–23]. Several second-order accuracy nonlinear and linear difference schemes for the generalized
Rosenau–Burgers equation have been restricted to one-dimensional (1D) in [24–29]. To our knowledge, there are no papers
presenting numerical study of the Rosenau–Burgers equation in two dimensions by finite difference methods. Therefore, in
this article, we consider the periodical boundary problem for the following version of 2D Rosenau–Burgers (RB) equation:

ut + ∆2ut − α∆u + β∇ · u + u∇ · u = 0, (x, y) ∈ R2, 0 < t ≤ T , (1.3)

and initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ R2, (1.4)

subject to the (L1, L2)-periodic boundary conditions

u(x + L1, y, t) = u(x, y, t), u(x, y + L2, t) = u(x, y, t), 0 < t ≤ T , (1.5)

where α > 0, β ∈ R, ∆u =
∂2u
∂x2

+
∂2u
∂y2

is the Laplacian operator, ∇ · u =
∂u
∂x +

∂u
∂y and u0(x, y) is a given (L1, L2)-periodic

function.
In this paper, we will prove that the difference scheme (1.3)–(1.5) is convergent with the convergence rate of order two

in the uniform normwithout any restriction on the meshsizes. A brief outline of the paper is as follows, Section 2 is devoted
to the construction of difference scheme. Some priori estimates are presented in Section 3, one proves the existence of the
difference solution in Section 4. The uniqueness is analyzed in Section 5, in Section 6, second-order error estimates in L∞

and stability are derived. In Section 7, an iterative algorithm for the difference scheme with the proof of the convergence
are given. In the next section, concluding remarks are discussed. At last section, some numerical examples are presented to
prove the theoretical results.

2. Nonlinear finite difference scheme

To solve the periodic initial-value problem (1.3)–(1.5), one can restrict it on a bounded domain Ω = [0, L1] × [0, L2]. For
a positive integer N , let time-step τ =

T
N , tn = nτ , 0 ≤ n ≤ N , and tn+ 1

2
=

1
2 (tn + tn+1), 0 ≤ n ≤ N − 1. Given temporal

discrete function {V n / 0 ≤ n ≤ N}, we denote

V n+ 1
2 =

V n+1
+ V n

2
, ∂tV n

=
V n+1

− V n

τ
.

Wedefine a partition of [0, L1]×[0, L2] by the rectangles [xi, xi+1]×[yj, yj+1]with xi = ih, yj = jh, i = 0, 1, 2, . . . ,M1 := [
L1
h ],

j = 0, 1, 2, . . . ,M2 := [
L2
h ]. Denote

Ωh =
{
(xi, yj) / 0 ≤ i ≤ M1, 0 ≤ j ≤ M2

}
, Ωτ = {tn / 0 ≤ n ≤ N} .

We define the space of periodic grid functions on Ωh as:

Vh =
{
V = (Vi,j)i,j∈Z / Vi,j ∈ R , Vi+M1,j = Vi,j, Vi,j+M2 = Vi,j, i, j ∈ Z

}
.

For V ∈ Vh, denote

δ+xVi,j =
Vi+1,j − Vi,j

h
, δ+yVi,j =

Vi,j+1 − Vi,j

h
,

δ−xVi,j =
Vi,j − Vi−1,j

h
, δ−yVi,j =

Vi,j − Vi,j−1

h
,

δ0xVi,j =
Vi+1,j − Vi−1,j

2h
, δ0yVi,j =

Vi,j+1 − Vi,j−1

2h
,

δ2xVi,j = δ+xδ−xVi,j, δ2yVi,j = δ+yδ−yVi,j,

∇hVi,j = (δ0x + δ0y)Vi,j, ∆hVi,j = (δ2x + δ2y )Vi,j, ∆2
hVi,j = ∆h(∆hVi,j).

For U ∈ Vh and V ∈ Vh define the inner product

(U, V )h = h2
M1∑
i=1

M2∑
j=1

Ui,j · Vi,j,



Download	English	Version:

https://daneshyari.com/en/article/6892454

Download	Persian	Version:

https://daneshyari.com/article/6892454

Daneshyari.com

https://daneshyari.com/en/article/6892454
https://daneshyari.com/article/6892454
https://daneshyari.com/

