
Computers and Operations Research 100 (2018) 128–139

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Advanced constraint propagation for the combined car sequencing and

level scheduling problem

Mesut Yavuz

a , ∗, Hüseyin Ergin

b

a The University of Alabama, Department of Information Systems, Statistics, and Management Science, United States
b Ball State University, Department of Computer Science, United States

a r t i c l e i n f o

Article history:

Received 20 September 2017

Revised 11 June 2018

Accepted 19 July 2018

Available online 27 July 2018

Keywords:

Automotive industry

Branch-and-bound

Just-in-Time

Manufacturing

Optimization

Sequencing

a b s t r a c t

We present an advanced constraint propagation algorithm for the combined car sequencing and level

scheduling problem, used within a branch-and-bound framework. The new method solves the only un-

solved instance from Drexl et al. (2006) and four of the eight unsolved instances from Yavuz’s (2013)

testbeds. The paper also introduces 18 new instances, 9 of which are solved by the algorithm. Optimal

sequences of up to 250 cars are obtained.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Mixed-model automotive assembly line sequencing is addressed

in two main streams of research: car sequencing and level schedul-

ing . Car sequencing is a pure constraint satisfaction approach. Car

variants are expressed as combinations of some key product char-

acteristics (called “options ”) that affect the processing times of

variants in critical workstations. Without loss of generality, an op-

tion is assumed to increase the processing time of a variant requir-

ing it. Car sequencing aims to find a feasible sequence of cars so

that total requirement of each option in every subsequence is lim-

ited, where the maximum allowed requirement and subsequence

length vary among options.

Level scheduling is also a discrete-time sequencing approach

aiming to minimize aggregate deviations from an ideal (smooth)

schedule. Level scheduling is widely used in just-in-time manu-

facturing systems. Only a few papers have addressed the Com-

bined Car Sequencing and Level Scheduling Problem (CCSLSP).

Drexl and Kimms (2001) wrote the seminal paper on the CC-

SLSP and proposed a column generation algorithm to solve it.

Drexl et al. (2006) and then Yavuz (2013) incorporated constraint

propagation into tree search algorithms of branch-and-bound and

iterated beam search, respectively. The present paper solves the

∗ Corresponding author.

E-mail address: myavuz@cba.ua.edu (M. Yavuz).

CCSLSP more efficiently by advancing constraint propagation and

utilizing it within a branch-and-bound algorithm.

The remainder of the paper is organized as follows.

Section 2 briefly reviews the related work in car sequencing

and level scheduling literatures. Section 3 mathematically defines

the problem. In Section 4 , we first build a hierarchical struc-

ture of auxiliary variables that complements the mathematical

formulation of the previous section and exploits the underlying

mathematical structure of the problem. We then establish 38

rules regulating the relationships among those auxiliary vari-

ables, and embed them in our constraint propagation algorithm.

Section 5 demonstrates the effectiveness of the constraint propa-

gation algorithm when used within a branch-and-bound algorithm

on existing and new, larger-size instances of the problem. Finally,

Section 6 provides some concluding remarks and points at possible

future research directions.

2. Related work

2.1. Car sequencing

The car sequencing problem (CSP) is a discrete-time schedul-

ing problem consisting of assignment and option constraints, and

it aims to find a feasible sequence of a given set of car variants.

Let V denote the number of distinct car variants sharing a

mixed-model assembly line. Demand (d v) for the planning hori-

zon, which is a day or a shift, is given for each variant v = 1 , ., V .

https://doi.org/10.1016/j.cor.2018.07.018

0305-0548/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cor.2018.07.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2018.07.018&domain=pdf
mailto:myavuz@cba.ua.edu
https://doi.org/10.1016/j.cor.2018.07.018

M. Yavuz, H. Ergin / Computers and Operations Research 100 (2018) 128–139 129

The planning horizon consists of T equal-length slots, where T = ∑ V
v =1 d v is the total demand for the planning horizon and each

slot’s length equals the cycle time of the assembly line. The slots,

hereafter referred to as positions or periods, of this discrete se-

quence are indexed by t .

If the assembly line is perfectly synchronized, i.e., each variant

takes the same amount of processing time in each workstation,

then any sequence of T cars could flow through the assembly line

without causing any line stoppages. However, when assembly line

balancing does not result in such a perfect synchronization, some

options may require longer (than cycle time) time in some work-

stations. Line stoppages may be preventable as long as the total

time requirement in a workstation throughout the planning hori-

zon does not exceed the length of the planning horizon, i.e., av-

erage processing time in a workstation does not exceed the cycle

time. Stations can be made longer and also cars with longer and

shorter processing times can be alternated in a sequence to allow

the workstation to catch up with the workload. In the automotive

industry, processing times are typically discrete such that a work-

station may have a long processing time for each car requiring a

certain option and a short (possibly zero) processing time for each

car not requiring that option. Line stoppages can then be prevented

by spacing cars requiring a certain option, giving rise to the option

constraints in the CSP.

There are O distinct options, indexed by o . Variant v requires

option o if b v ,o = 1 , and does not require it if b v ,o = 0 . The total

requirement of option o is R o =

∑ V
v =1 b v ,o d v . An option constraint

is denoted by H o : N o , meaning that at most H o cars requiring o

are allowed to appear in any subsequence of N o cars. Option con-

straints are also called “spacing” constraints due to their role in

spacing subsequent occurrences of options. The subsequence of N o

cars ending with position t is called the constraint window for op-

tion o ending with position t , and is denoted by w o,t = { max { 1 , t +

1 − N o } , ., t} . We also define �o, t as the total requirement for op-

tion o in w o, t for future use.

Bolat and Yano (1992) provide the basic analytical approach to

determine H o and N o in presence of binary processing times such

that variants requiring an option take longer than cycle time and

others take shorter than cycle time. Golle et al. (2010) analyze the

differences between f easibility of sequences with respect to option

spacing constraints (H o : N o) and the actual workloads in individual

workstations along the line. The authors develop a new approach

to determining H o and N o also applicable in presence of multiple

processing times. We refer the interested reader to these works

and to Lesert et al. (2011) for further reading on selecting criti-

cal options and quantifying their spacing constraints, and focus on

sequencing cars with given option constraints.

The CSP is concerned with finding a feasible sequence of T cars

satisfying the stated assignment and option constraints, and it is

strongly N P -hard (Kis, 2004). Assignment constraints assure that

each car is assigned to exactly one position, and exactly one car

is assigned to each position. Clearly, the assignment constraints

are easily satisfied and the difficulty of the CSP lies in the option

constraints. The problem is N P -hard even when all options con-

straints are 1:2, i.e., H o = 1 and N o = 2 for all options (Estellon and

Gardi, 2013). The CSP, first proposed by Parrello et al. (1986) , has

received significant interest from the constraint programming com-

munity (Dincbas et al., 1988; van Hentenryck et al., 1992; Tsang,

1993). A test-bed for the CSP is included in CSPLib: a library for

constraints (Gent and Walsh, 1999).

Exact solution approaches for the CSP are limited due to its

computational complexity. Kis (2004) developed a dynamic pro-

gramming formulation that can practically solve problems up

to 20 cars. Given the problem-size limitations of exact solu-

tion approaches, heuristics have been researched in more depth.

Siala et al. (2015) build a unified heuristic algorithm that can be

characterized based on four components. The authors state that

42 meaningful combinations exist and some of them correspond

to existing constraint programming heuristics in the literature.

Through a computational experiment, they analyze the impact of

different selections available for the four components and find that

branching on variants is superior to branching on options . An-

other finding from this study is that starting from the middle of

the planning horizon and filling positions towards the ends in an

alternating fashion works slightly better than starting from the first

position and filling sequentially therefrom.

The operations research community has also shown some in-

terest in the CSP, especially around 2005, when an extended

version of the CSP was the topic of the French Society of Op-

erations Research and Decision Aid’s bi-annual challenge; see

Solnon et al. (2008) and the references therein for papers devel-

oped for the stated challenge. Operations research approaches to

the CSP mostly rely on modifications to the problem to move op-

tion constraints to the objective function, which aggregates “soft”

option constraint violations. Basically, an option constraint vio-

lation is observed when �o, t exceeds H o , for an option o in a

period t . It is thus straightforward to define the objective func-

tion coefficient, or the total option constraint violation penalty, as

max { �o,t − H o , 0 } for each (o, t) pair.

Fliedner and Boysen (2008) highlight a potential problem with

simply counting the number of violations for (o, t) pairs and pro-

pose a new objective function counting such violations only if the

variant scheduled in a position requires the over-demanded option.

The authors solve the arising optimization problem via branch-

and-bound. Bautista et al. (2008a) define upper-over-assignment

and upper-under-assignment that measure deviations from max-

imum option allowances, and then combine them in a weighted

objective function. This approach is similar to the multi-level just-

in-time level scheduling problem, except requirements from lower

levels are counted only within option windows instead of from

the beginning of sequence. The authors then solve this prob-

lem via a beam search heuristic. Thiruvady et al. (2014) de-

velop a hybrid Lagrangian-ACO matheuristic for the same prob-

lem. Bautista et al. (2008b) extend this formulation by defining

a minimum number of occurrences in each option window and

adding lower-over-assignment and lower-under-assignment terms

to the objective function and solve the arising problem via a

GRASP heuristic. We refer the reader to Gagné et al. (2006) and

Golle et al. (2014) , and the references therein for further reading

on soft-constraint approaches to the CSP.

2.2. Level scheduling

The level scheduling problem (LSP) traces back to Monden ’s

(1983) seminal book on the Toyota Production System. It has been

studied in several forms and under various names such as just-in-

time scheduling, mixed-model assembly line scheduling, and pro-

duction smoothing (Yavuz and Akçali, 2007). Level schedules help

achieve the much desired one-piece-flow in unconstrained systems

and approximate it in constrained systems.

Toyota’s level scheduling approach focuses on reducing the vari-

ability in the demand for subassemblies used at the final stage cre-

ated by the final assembly schedule. The LSP is naturally multi-

level, is commonly known by the name output rate variation

(ORV) and is N P -hard (Kubiak, 1993). The first exact algorithm

developed for the ORV is a dynamic programming procedure of

Kubiak et al. (1997) . Stronger mathematical properties of the prob-

lem are shown and incorporated into improved dynamic program-

ming procedures by Fliedner et al. (2010) ; Miltenburg (2007) . A

recent Branch-and-Bound algorithm developed by Pereira and Vilà

(2015) uses multiple improved lower and upper bounds and is the

most capable solution developed for the ORV so far.

Download English Version:

https://daneshyari.com/en/article/6892486

Download Persian Version:

https://daneshyari.com/article/6892486

Daneshyari.com

https://daneshyari.com/en/article/6892486
https://daneshyari.com/article/6892486
https://daneshyari.com

