
Computers and Operations Research 100 (2018) 230–243

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Fast heuristics for minimizing the makespan in non-permutation flow

shops

Alexander J. Benavides a , Marcus Ritt b , ∗

a Escuela Profesional de Ciencia de la Computación, Universidad Nacional de San Agustín de Arequipa, Av. Venezuela S/N Área de Ingenierías, Arequipa, Peru
b Instituto de Informática, Universidade Federal do Rio Grande do Sul, Av. Bento Gonalves, 9500, Porto Alegre 91501-970, Brazil

a r t i c l e i n f o

Article history:

Received 12 March 2018

Revised 9 July 2018

Accepted 18 July 2018

Available online 20 July 2018

Keywords:

Scheduling

Metaheuristics

Flow shop

Non-permutation schedules

Makespan

Iterated greedy algorithm

a b s t r a c t

We introduce a new permutation representation for non-permutation schedules, and show how the ac-

celeration technique of Taillard can be extended to it. We propose three new heuristics for the non-

permutation flow shop scheduling problem with makespan minimization: a constructive heuristic with

the same time complexity as the well-known NEH heuristic, a non-permutation insertion local search

with a time complexity O (n 2 m) for evaluating a neighbourhood on n jobs and m machines, the same

as for the permutation insertion local search, and a reduced-neighbourhood best-improvement non-

permutation local search with a time complexity of O (nm) per neighbourhood. These heuristics are com-

bined into iterated greedy algorithms for the permutation and non-permutation flow shop scheduling

problem. In extensive computational experiments we find that our iterated greedy algorithms produce

better non-permutation schedules than other methods for the permutation and non-permutation flow

shop scheduling problem, in the same computational time.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Flow shop scheduling is a very common manufacturing layout,

with a wide range of applications in production and other areas,

e.g. in database applications (Allahverdi and Al-Anzi, 2002) or par-

allel computing (Sahni, 1995). Flow shop scheduling is also the ba-

sis for scheduling robotic cell flowshops, which are widely used in

modern manufacturing systems (Dawande et al., 2007). In a flow

shop, a collection of jobs J 1 , . . . , J n must be processed on machines

M 1 , . . . , M m

following the same fixed machine sequence. The pro-

cessing of job J j on machine M i is called the operation o ij , and this

operation must be processed without interruption for a time p ij . At

any given instant, each job can be processed on at most one ma-

chine, and no machine can process more than one job. A schedule

is an allocation of the jobs to the machines over time. The flow

shop scheduling problem (FSSP) consists in finding a schedule op-

timizing some objective function. Minimizing the makespan is the

most common optimization criterion in the literature, and the re-

sulting problem is NP-complete. The makespan is defined as the

maximum completion time, i.e. the completion time of the latest

job. Table 1 shows the processing times of an instance of the FSSP

with six jobs and six machines.

∗ Corresponding author.

E-mail addresses: ajbenavides@unsa.edu.pe (A.J. Benavides),

marcus.ritt@inf.ufrgs.br (M. Ritt).

A permutation schedule processes the jobs in the same order

on all machines. For this reason it can be represented by a sin-

gle permutation of the jobs. A non-permutation schedule may have

a different processing order of jobs for some machines. There are

n ! max { m −2 , 1 } candidates for the optimal schedule, since there al-

ways exists an optimal schedule with the same job sequence on

the first two and on the last two machines (Conway et al., 1967).

Fig. 1 shows the best possible permutation schedule for the in-

stance given in Table 1 , of makespan 43. The best non-permutation

schedule shown in Fig. 2 has makespan 40. Note that the order of

J 6 and J 4 changes between M 3 and M 4 .

Since the permutation flow shop scheduling problem (PFSSP)

is a simplification of the FSSP that only considers n ! candidate

permutations, it can lead to inferior solutions. Non-permutation

schedules can be up to a factor O (
√

m) shorter than permutation

schedules, and are often significantly shorter in practice (Liao et al.,

2006; Potts et al., 1991; Tandon et al., 1991). Nevertheless, almost

all the literature focuses on the PFSSP since it is easier to solve.

In this paper we propose efficient heuristics for finding per-

mutation and non-permutation schedules of short makespan.

The paper makes four main contributions. First, we introduce a

new representation of non-permutation schedules with split jobs,

which greatly simplifies manipulation of and reasoning about non-

permutation schedules. Second, we systematically explore local im-

provement after each insertion in constructive heuristics. Third, we

introduce a new local search for non-permutation schedules based

https://doi.org/10.1016/j.cor.2018.07.017

0305-0548/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cor.2018.07.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2018.07.017&domain=pdf
mailto:ajbenavides@unsa.edu.pe
mailto:marcus.ritt@inf.ufrgs.br
https://doi.org/10.1016/j.cor.2018.07.017

A.J. Benavides, M. Ritt / Computers and Operations Research 100 (2018) 230–243 231

Fig. 1. Gantt chart of the optimal permutation schedule π = (J 5 , J 4 , J 6 , J 2 , J 1 , J 3) for

the 6 × 6 FSSP instance given in Table 1 . Blocks of operations on the critical path

are drawn dashed.

Table 1

A 6 × 6 instance of the FSSP.

Machine

Job M 1 M 2 M 3 M 4 M 5 M 6

J 1 3 6 3 3 4 3

J 2 4 3 5 3 5 2

J 3 6 5 2 2 2 4

J 4 4 5 2 2 5 5

J 5 2 2 5 6 3 5

J 6 2 3 5 5 3 3

Fig. 2. Gantt chart of the optimal non-permutation schedule for the 6 × 6 FSSP in-

stance given in Table 1 (Jobs J 1 and J 6 are divided by jobs J 3 and J 4 respectively).

on swapping the order of adjacent jobs, and introduce accelera-

tion techniques to make it efficient. Finally, we provide a compre-

hensive experimental evaluation, which includes the large, hard in-

stances of Vallada et al. (2015) .

In the remainder of this section we review the literature on

both problems. We introduce the new representation of non-

permutation schedules in Section 2 , introduce new constructive

heuristics in Section 3 , new local search methods in Section 4 , an

iterated greedy algorithm in Section 5 . Acceleration techniques to

implement these methods efficiently are explained in Section 6 . In

Section 7 we present and discuss the results of extensive computa-

tional tests and comparisons to existing methods. In Section 8 we

offer some concluding remarks.

1.1. Literature review on the PFSSP

The constructive heuristic NEH (Nawaz et al., 1983; Taillard,

1990) is considered to be the best heuristic for the PFSSP (Dong

et al., 2008; FarahmandRad et al., 2009; Fernandez-Viagas and

Framinan, 2014; Kalczynski and Kamburowski, 2009; Rossi et al.,

2016; Vasiljevic and Danilovic, 2015). A pseudo-code of NEH

is given in Algorithm 1 . First, the jobs are ordered by non-

increasing total processing time to create a priority order πo =

(πo (1) , . . . , πo (n)) , and an initial partial solution π = (πo (1)) con-

taining only the first job is created. Then, NEH inserts the next job

π o (l) into the current partial solution π at the position that min-

imizes its makespan. This is repeated until π is a complete solu-

tion. After each insertion, an improvement method may be applied

to the partial schedule (line 6). The improvement is not part of the

original NEH heuristic. The heuristic processes n jobs, line 4 needs

to evaluate the makespan for O (n) possible insertion positions for

each job, and calculating the makespan of a schedule needs time

O (nm). Thus, the time complexity of NEH is O (n 3 m).

Algorithm 1 Constructive heuristic NEH for the PFSSP.

Input: The processing times p i j for each job J j on each machine

M m

.

Output: A permutation schedule π .

1: πo := jobs ordered by non-increasing total processing time

2: π := (πo (1))

3: for l ∈ [2 , n] do

4: Evaluate all possible insertions of job πo (l) into π
5: Insert job πo (l) into π at the best position

6: Optionally, improve the partial solution

7: end for

8: return π

Taillard (1990) has shown that the makespan of all O (n)

possible insertions in line 4 can be computed in time O (nm),

reducing the time of the NEH heuristic to O (n 2 m). To see this,

assume that job J l is going to be inserted into the partial permu-

tation schedule π = (π(1) , . . . , π(n ′)) to produce the permutation

π ′ = (π ′ (1) , . . . , π ′ (n ′ + 1)) . The makespan values M C 1 , . . . , M C k +1

after inserting job J l at position k ∈ [n ′ + 1] are calculated as

follows. The head or earliest completion time e ik of job π(k) = J j
on machine M i is

e ik = max { e i,k −1 , e i −1 ,k } + p i j , i ∈ [m] , k ∈ [n

′] , (1)

where e 0 ,k = e i, 0 = 0 . Similarly, the tail q ik , i.e. the time between

the end of processing and the latest possible starting time of each

job π(k) = J j on each machine i is

q ik = max { q i,k +1 , q i +1 ,k } + p i j , i ∈ [m] , k ∈ [n

′] , (2)

where q m +1 ,k = q i,k +1 = 0 . The earliest relative completion time e ′
ik

of job J l when inserted at position k on each machine M i then is

e ′ ik = max { e ′ i −1 ,k , e i,k −1 } + p il , i ∈ [m] , k ∈ [n

′ + 1] , (3)

where e ′
0 ,k

= 0 . The earliest completion time e i,k −1 before the

insertion position k remains unchanged after the insertion of job

J l , and thus can be used to find e ′
ik

. Finally, the makespan MC k
of the permutation schedule π ′ after the insertion of job J l at

position k ∈ [n ′ + 1] is

MC k = max
i ∈ [m]

{ e ′ ik + q ik } . (4)

(The notation used here and in the remainder of the paper is

summarized in Table 2 .)

Many researchers have proposed improvements of the NEH

heuristic (Dong et al., 2008; Fernandez-Viagas and Framinan,

2014; Kalczynski and Kamburowski, 2009; Vasiljevic and Danilovic,

2015). The improvements add a very small computational cost by

evaluating different initial priority orders, and by breaking ties

in the initial priority order and in the selection of the insertion

position. The current best constructive heuristic with complexity

O (n 2 m) was proposed by Fernandez-Viagas and Framinan (2014) .

They report an average relative deviation (ARD) of 2.897% from the

best known values for the benchmark proposed by Taillard (1993) .

Other researchers have proposed an improvement

phase after each insertion (line 6 in Algorithm 1).

FarahmandRad et al. (2009) proposed NEH-based constructive

methods that evaluate the relocation of a previously inserted job.

Their FRB3 heuristic with complexity O (n 3 m) tries to relocate each

job and presents an ARD of 1.63%, and their FRB4 heuristic with

complexity O (kn 2 m) relocates only k jobs around the last inserted

job and presents an ARD of 1.87% for k = 12 . Their most expensive

heuristic, FRB5, performs an insertion local search after each new

job insertion, and leads to an ARD of 1.44%. Rossi et al. (2016) pro-

posed a similar approach of complexity O (n 3 m). Their improve-

ment phase evaluates the reinsertion of pairs of jobs. They

Download English Version:

https://daneshyari.com/en/article/6892493

Download Persian Version:

https://daneshyari.com/article/6892493

Daneshyari.com

https://daneshyari.com/en/article/6892493
https://daneshyari.com/article/6892493
https://daneshyari.com

