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a b s t r a c t 

We extend the �-robustness approach proposed by Bertsimas and Sim for Linear Programs to the case 

of non-linear impact of parameter variation. The seminal work considered protection from infeasibility 

over the worst-case variation of coefficients in a constraint, this variation being controlled by an uncer- 

tainty budget called �. When coefficients are non-linear functions of a parameter subject to uncertainty, 

we study a piecewise linear approximation of the function, and show that the subproblem of determin- 

ing the worst-case variation can still be dualized despite the discrete structure of the piecewise linear 

function. We conduct numerical experiments on three different problems: Capital Budgeting, Generalized 

Assignment and Knapsack problems to analyze the trade-off between feasibility and objective value for 

the robust solution of the piecewise linear approximation compared to the nominal solution, and to a 

simpler binary approximation. Despite the piecewise approximation, the robust solution reveals to re- 

main feasible over the 6800 runs performed in our experiments, with an average deterioration of the 

objective value of only a few percents. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In this paper we adapt the �-Robustness paradigm developed 

by Bertsimas and Sim (2004) to the case where coefficients in con- 

straints depend on data the variation of which impacts the coeffi- 

cient in a non-linear way. This is the case if one considers demand 

as a function of price, the Net Present Value (NPV) of an invest- 

ment project as a non-linear function of the discount rate, or the 

choice probability as the ratio of exponentials of utilities in a logit 

choice model (we will more formally detail these situations at the 

end of this introduction). We consider a generic linear program P 

of the form: 

max 

n ∑ 

j=1 

c j x j (1) 

s.t 

n ∑ 

j=1 

a i j x j ≤ b i i = 1 , . . . , m (2) 

x ≥ 0 (3) 

In the classical �-robustness approach, for some constraints i , 

coefficients a ij are subject to uncertainty and described by a i j = 
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ā i j + ˆ a i j z i j , where ā i j is the nominal value of the coefficient, ˆ a i j 

is its maximum variation, and z i j ∈ [ −1 , 1] . The framework devel- 

oped in Bertsimas and Sim (2004) generates a robust counterpart 

for P that ensures feasibility of the robust solution whatever the 

variation of coefficients satisfying a given level of conservatism. 

This level of conservatism is controlled by a so-called uncertainty 

budget: the number of coefficients that can vary in constraint i 

is supposed not to exceed a budget �i , i.e., �j | z ij | ≤�i . This is 

consistent with the fact that, if for example coefficients are de- 

mand forecasts or orders, not all of them will vary at the same 

time. The �-robustness approach (see Bertsimas and Sim, 2004 for 

the construction of the robust counterpart of P) extends the more 

conservative approach of Soyster (1973) and has the advantage to 

be more tractable than the non-linear approach of Ben-Tal and 

Nemirovski (1999) based on ellipsoidal uncertainty, as the robust 

model remains an LP. However, it does not enable to capture in 

a straightforward way some specific kinds of problems or uncer- 

tainty structures. In the literature, to the best of our knowledge 

we can identify two families of extensions of �-robustness that 

deal with (i) time-dependent variations of coefficients, (ii) distri- 

bution of the uncertainty interval, and (iii) Right-Hand Side (RHS) 

uncertainty (a recent survey on robust optimization can be found 

in Gabrel et al., 2014 ): 

(i) Time-dependent coefficients and adaptive uncertainty budget �. 

Bertsimas et al. (2013) and Lorca and Sun (2015) address the 

unit commitment problem in the energy sector. In their work, 

the authors tackle the issue of defining a proper uncertainty set 
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for their problem. Bertsimas et al. use a set described by three 

parameters: a nominal value ( ̄a t 
i j 

), a maximum deviation ( ̂  a t 
i j 

), 

and a budget of uncertainty ( �t ) for each point in time. In this 

way, the uncertainty set adapts to the evolution of the problem 

through time. Lorca and Sun propose the use of dynamic uncer- 

tainty sets , where the uncertainty at each time period is a func- 

tion of the uncertainty in previous stages. The authors use time 

series models to control the boundaries of the uncertainty sets 

for their problem. Poss (2014) presents an approach to robust 

combinatorial optimization where the budget of uncertainty is 

given by a function γ , rather than a constant �. Function γ ad- 

justs the degree of conservatism according to the cardinality of 

the optimal solution, especially for problems where the opti- 

mal solution is sparse. The results can be extended to different 

budget functions better capturing the uncertainty arising from 

a specific context. 

(ii) Distribution of the uncertainty interval . While the works pre- 

viously cited mainly focus on the uncertainty budget �, 

Büsing and D’Andreagiovanni (2014) propose an extension on 

the distribution of the uncertainty set, which they call multi- 

band uncertainty . Since the deviation probability may vary 

along the uncertainty set, e.g. small deviations are more likely 

to occur than large ones, the proposed uniformity assump- 

tion could lead to an unrealistic uncertainty set. Büsing and 

D’Andreagiovanni (2014) propose to break the set into multi- 

ple narrower ”bands”, each with a customized � value, accord- 

ing to historical data. The uncertainty set is thus built so as to 

approximate the shape of the distribution of deviations. Sim- 

ilarly, in Düzgün (2012) ; Düzgün and Thiele (2010, 2015) , the 

authors propose the use of multiple ranges for the uncertain 

parameters, limiting overly conservative solutions when the un- 

certainty set is too wide. Düzgün and Thiele (2015) bound as 

well the number of parameters that fall into each range (pes- 

simistic view), but also bound the number of parameters that 

take the worst-case value within each range. The authors apply 

this setting to a project selection problem. 

Let us mention that the concept of uncertainty budgets have 

also been used for problems with RHS uncertainty (e.g., Gabrel and 

Murat, 2010, Minoux, 2011 , and Billionnet et al., 2014 for column- 

wise uncertainty and two-stage problems with recourse variables). 

In this paper, we keep the �-robustness principle that consists 

of protecting against infeasibility over a controlled variation of pa- 

rameters. However, we extend it to cases when the coefficients are 

non-linear functions of given data that are potentially subject to 

variations. For example in capacitated Facility Location problems, 

demands D j of demand sources j often appear in the left-hand 

side of capacity constraints. If there is uncertainty on the market 

price of the product, then we should consider D j = f j (p j ) where 

p j is the price of the product at demand source j (demand sources 

may be located in different countries) and f j is generally non-linear, 

concave decreasing. 

Also, consider a Capital Budgeting problem with uncertainty on 

project values (see Meier et al., 2001 for a study on this topic). 

The capital budgeting problem consists in selecting a portfolio of 

investment projects maximizing the total net value of the portfolio 

while respecting resource constraints. Then the Net Present Value 

(NPV) of a project j is the sum of discounted cash-flows F jt over 

the years t = 0 , . . . , T , i.e., NP V j = 

∑ T 
t=0 

F jt 
(1+ a j ) t 

, where a j is the dis- 

count rate for project j . This discount rate r j depends on several 

factors, some are exogenous like the interest rate of the country 

where project j is located, some are endogenous like the level of 

return the decision-maker wants to compensate her risk (the vari- 

ous projects being more or less risky). In any case, a j is likely to be 

subject to imprecision or uncertainty and the NPV is clearly non- 

linear in a j . 

In Multinomial Logit (MNL) choice models ( Mc Fadden, 1973 ), 

the probability p ij of customer i choosing product j is expressed 

by p i j = e u i j / ( 
∑ 

k e 
u ik ) which is a non-linear function of utilities u ij 

that are known to be hard to calibrate precisely (see Espinoza Gar- 

cía and Alfandari, 2015 for an application to the location of new 

housing developments). Another example could be non-linear con- 

sumption functions depending on uncertain temperatures. 

Note that several papers deal with non-linear robust optimiza- 

tion, but their goal is more to study the robust counterpart of a 

non-linear problem, i.e. the nominal problem comprises non-linear 

functions of the variables (see for example Ben-Tal et al., 2017; 

Ben-Tal and Nemirovski, 1998; Ben-Tal et al., 2002; Diehl et al., 

2006; Houska and Diehl, 2013; Kawas and Thiele, 2011; Takeda 

et al., 2008; Zhang, 2007 ). This is not the case studied in this paper 

since our nominal problem is linear, only the impact of parameter 

variation is non-linear in our framework. A robust network design 

problem was studied in Pessoa and Poss (2015) which was a lin- 

ear program with a quadratic dependency on uncertainty in a con- 

straint. However, the solving approach was not based on a generic 

compact reformulation as we do, but on cutting planes to generate 

uncertainty scenarios on the fly. Also, we found a paper on a ro- 

bust chance-constrained knapsack problem ( Han et al., 2016 ) that 

has some similarities with our approach. Ellipsoidal uncertainty is 

considered in this paper, which provides a quadratic impact of data 

variation in the knapsack constraint. Although this paper considers 

a specific problem and ellipsoidal uncertainty, the approximation 

of their quadratic function can be seen as a special case of our 

generic approach. 

The paper is organized as follows. Section 2 describes the ro- 

bust problem and discusses its tractability, as the robust problem 

cannot be turned into a linear program. In Section 3 , we approxi- 

mate the non-linear variation with a binary approximation. A more 

refined piecewise linear function is proposed in Section 4 . We 

show that the approximation of the robust counterpart is tractable 

using LP dualization for the worst-case subproblem. Section 5 is 

devoted to numerical experiments and analyzes the performance 

of our extended robustness approach and of the piecewise approx- 

imation. Section 6 concludes the paper. 

2. Problem statement 

We consider constraints of the form ∑ 

j 

f i j (a i j ) x j ≤ b i 

where f ij ( a ij ) is non-linear. We use the notation f ij ( a ij ) instead of 

a i j = f i j (p i j ) where p ij would be the varying parameter, in order 

to keep the usual notation a i j = ā i j + z i j ̄a i j where a ij is the varying 

parameter and z ij is the deviation variable in the robust counter- 

part. We denote by P f the original problem P where coefficients 

in the constraints are of the form f ij ( a ij ), where a ij is the coeffi- 

cient subject to uncertainty and functions f are not linear. For this 

variant P f , the robust transformation proposed in Bertsimas and 

Sim (2004) would result in a non-linear problem. If we denote as 

in Bertsimas and Sim (2004) by �i ∈ N the maximum total varia- 

tion of coefficients a ij in constraint i (uncertainty budget), the ro- 

bust problem associated with P f can be expressed as: 

max 

n ∑ 

j=1 

c j x j (4) 

s.t ω i (x, �i ) ≤ b i ∀ i = 1 , . . . , m (5) 

x ≥ 0 (6) 
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