
Computers and Operations Research 99 (2018) 206–217

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

An exact algorithm for the Blocks Relocation Problem with new lower

bounds

Kent E. Yucra Quispe

a , Carla N. Lintzmayer b , Eduardo C. Xavier a , ∗

a Institute of Computing, University of Campinas, Brazil
b Center for Mathematics, Computation and Cognition, Federal University of ABC, Brazil

a r t i c l e i n f o

Article history:

Received 4 December 2017

Revised 21 June 2018

Accepted 24 June 2018

Available online 7 July 2018

Keywords:

Blocks Relocation Problem

Container Relocation Problem

Exact algorithms

Lower bounds

a b s t r a c t

The Blocks Relocation Problem is an important problem in storage systems. An input instance for it con-

sists of a set of blocks distributed in stacks where each block is identified by a retrieval number and

each stack has a same maximum height limit. The objective is to retrieve all the blocks respecting their

retrieval order and performing the minimum number of relocations. Only blocks at the top of a stack can

be moved: either a block is retrieved, if it has the highest retrieval priority among the stacked blocks,

or it is relocated to the top of another stack. Solving this problem is critical in storage systems because

it saves operational time and resources. In this paper, we present two new lower bounds for the num-

ber of relocations of an optimal solution. We implemented an exact iterative deepening A

∗ algorithm

using these new proposed lower bounds and other well-known lower bounds from the literature. We

performed several computational experiments to show that the new lower bounds improve the perfor-

mance of the exact algorithm, solving to optimality more instances than when using other lower bounds

when given the same amount of time.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is focused on the Blocks Relocation Problem (BRP) ,

also known as Container Relocation Problem in the literature,

which generally emerges from storage systems. In storage systems,

there are several types of items to be stored, such as containers

and pallets. We will refer to those items as blocks throughout the

paper. We consider that the blocks are stored in a series of stacks,

where at each stack one block is above another or at the bottom of

the stack. This is called the stacking area , which is the most com-

mon type of storage system of containers. This type of storage only

allows one to access the top block of a stack, which can be relo-

cated to the top of another stack or can be removed and placed

outside the stacking area, a move called retrieval .

Consider a container terminal where blocks have to be retrieved

from the stacking area and loaded onto trucks, following a given

precedence order called retrieval priority . The precedence of these

items may be motivated by several factors, such as the arriving or-

der of container transportation trucks or the delivery order of con-

tainers in a ship. Given a stacking area and the precedence order

∗ Corresponding author.

E-mail addresses: ra164889@students.ic.unicamp.br (K.E.Y. Quispe),

carla.negri@ufabc.edu.br (C.N. Lintzmayer), eduardo@ic.unicamp.br ,

eduardo@ic.unicamp.br (E.C. Xavier).

of the blocks, the objective of BRP is to minimize the number of

relocations in order to retrieve all blocks. In this paper, we present

two new lower bounds for the minimum number of relocations,

which are used in an exact iterative deepening A

∗ algorithm.

Kim and Hong (2006) proposed two variations for the BRP. In

the first one, each block has a unique retrieval priority, and in the

second one two or more blocks can have the same retrieval prior-

ity. They proposed a branch and bound algorithm and a fast heuris-

tic rule to determine the destination stack of each block trying to

reduce the number of relocations in the future. This rule can be

used in real time by any search procedure. The authors also intro-

duced the concept of blocking block , which is a block that is pre-

venting the retrieval of another block that is below it in the same

stack. This concept is used as a lower bound.

Caserta et al. (2009) proposed a binary representation of the

stacking area, which simplifies the transition from the current state

of the stacking area to a state generated by a relocation or re-

trieval. They developed a lookahead mechanism that is adapted to

this binary representation.

Lee and Lee (2010) introduced a new variant of the problem

where each relocation has a cost equal to the distance between the

two stacks over which the relocation is performed. First, they pre-

sented a simple heuristic to create a feasible solution. Then, they

tried to reduce the number of relocations by solving a binary linear

https://doi.org/10.1016/j.cor.2018.06.021

0305-0548/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cor.2018.06.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2018.06.021&domain=pdf
mailto:ra164889@students.ic.unicamp.br
mailto:carla.negri@ufabc.edu.br
mailto:eduardo@ic.unicamp.br
mailto:eduardo@ic.unicamp.br
https://doi.org/10.1016/j.cor.2018.06.021

K.E.Y. Quispe et al. / Computers and Operations Research 99 (2018) 206–217 207

Fig. 1. An instance for the BRP with S = 6 , H = 3 , and N = 15 .

integer program. Finally, they tried to reduce the cost of relocations

by solving a mixed integer linear program.

Caserta and Voß (2009) presented a new heuristic, named

corridor method, to the pre-marshalling problem . In the pre-

marshalling problem, one is given an initial stacking area and the

objective is to generate another configuration of it by performing

only relocations such that the resulting stacking area does not con-

tain blocking blocks. In another work, Caserta et al. (2011) applied

the corridor method to the BRP without limiting the height of the

stacks.

The BRP was shown to be NP-Hard by Caserta et al. (2012) . They

also presented a binary linear programming model that generates

solutions for small instances of the problem. To break this limita-

tion, realistic assumptions were introduced, which allowed them to

create a new binary linear programming model and a new heuris-

tic that was able to get good solutions for medium-sized instances.

Jovanovic and Voß (2014) proposed a new heuristic approach

to the BRP, which considers not only the current block to be re-

located but also the next block to be relocated. They named this

heuristic by Min-Max. This heuristic reduced by 5% the number of

relocations on average when compared to solutions generated by

another heuristic proposed by Caserta et al. (2012) .

Expósito-Izquierdo et al. (2014) presented several exact algo-

rithms based on the A

∗ search algorithm to solve the BRP. They

found 17 optimal solutions from 45 instances that were consid-

ered by Caserta et al. (2012) . They also presented a heuristic to

find high-quality solutions within a short computational time.

Tanaka and Takii (2016) presented a new lower bound to the

number of relocations based on previous lower bounds created by

Kim and Hong (2006) and Zhu et al. (2012) . The use of this new

lower bound on an exact algorithm resulted in 1.848% more opti-

mal instances being found than when using these previous lower

bounds from the literature.

The use of Pattern Databases (PDBs) in exact algorithms has

been effectively applied to solve challenging problems such as 16-

puzzle (Culberson and Schaeffer, 1998) and Rubik’s cube (Korf,

1997). For the BRP, it was first considered by Ku and Arthanari

(2016) , which use the concept of abstract states and PDB to shorten

the exploration of the search space. They compared this method

with other exact algorithms from the literature, showing that it

outperforms the other methods regarding the time to find optimal

solutions.

Contributions: In this paper, we present two new lower bounds

for the BRP, where one is purely combinatorial and is denoted

by LB-LIS. The other one derives from the creation of pattern

databases (PDB) (Felner et al., 2004) and is denoted by LB-PDB. We

use the two lower bounds in a general exact iterative deepening A

∗

algorithm. We also explore, in this exact algorithm, the use of pat-

tern databases as a way of memorizing part of the search space,

in the same way as was done by Ku and Arthanari (2016) . The ex-

act algorithm, when using LB-LIS as a lower bound, found 2% more

optimal instances than when using other lower bounds from the

literature. The improved exact algorithm, which uses PDBs to re-

duce the search space, together with LB-LIS, resulted in 4.1% more

instances being solved to optimality (5% if we consider the hardest

instances).

This paper is organized as follows. In Section 2 we present a

formal description of the problem while in Section 3 we describe

the structure of the exact algorithm we use in the computational

experiments. In Section 4 we present previous lower bounds found

in the literature and a new one that we propose. In Section 5 we

present the concept of pattern databases, which is also used to in-

duce a new lower bound. In Section 6 we present the computa-

tional results. Finally, in Section 7 we present our conclusions and

some final remarks.

2. Problem description

In the BRP we are given N blocks b 1 , b 2 , . . . , b N distributed in a

stacking area consisting of S stacks s 1 , s 2 , . . . , s S , with a maximum

height of H for each stack. The height of a stack s x , denoted by

height (s x), is the number of blocks stacked on it. Thus, in any pos-

sible configuration of the stacking area we must have height (s x) ≤ H

for all 1 ≤ x ≤ S . Each block b i , for 1 ≤ i ≤ N , has a retrieval priority

defined as i , which indicates its retrieval order. Therefore, the low-

est value means the highest priority, so b 1 is the first block to be

retrieved.

We denote by t the block with the highest retrieval priority in

the stacking area at any given moment, also called target block of

the stacking area, or target block of the instance. We call target

stack the stack containing block t . Similarly, we denote by t x the

block with the highest retrieval priority in stack s x at any given

moment, also called target block of stack s x .

Since we only have access to the block at the top of any stack,

there are only two available moves. A relocation is a move s x ⇒ s x ′
that takes the top block of stack s x and put it at the top of stack s x ′ ,
where it must be valid that height(s x ′) < H before the relocation.

Also, in the variation that we are considering, a relocation from s x
is allowed only if the target block t is in s x , so that we can retrieve

t later, after relocating all blocks above it. The BRP problem under

this restriction is still NP-hard and this assumption is used in sev-

eral works from the literature (Caserta et al., 2012). A retrieval is

a move s x ⇒ s 0 that removes the top block of stack s x from the

stacking area if such block is t (s 0 is an artificial stack).

An instance of the BRP consists of the dimensions of the stack-

ing area, S and H , the number N of blocks stored, and an initial

configuration of these blocks. A solution to an instance of the BRP

is a sequence of relocations and retrievals that clears the initial

stacking area. Note that the number of retrievals is constant and

equal to N , so the goal is to retrieve all the blocks respecting their

retrieval priorities using the minimum number of relocations. See

Fig. 1 for an example where we have t = 1 and we can only re-

locate blocks 7 and 10, in this order, before retrieving block 1. Af-

ter relocating blocks 7 and 10, we retrieve block 1, and then the

new target block becomes t = 2 . A possible sequence of relocations

to retrieve blocks 1, 2, 3, and 4 is S = { (s 3 ⇒ s 1) , (s 3 ⇒ s 1) , (s 3 ⇒

s 0) , (s 6 ⇒ s 3) , (s 6 ⇒ s 0) , (s 4 ⇒ s 0) , (s 5 ⇒ s 3) , (s 5 ⇒ s 3) , (s 5 ⇒ s 0) } .
Let b be a block in some stack s x and let a be some block that

is placed below b in the same stack, i.e., the height of b in s x is

greater than the height of a . If b > a , then b is called a blocking

block . In Fig. 1 , blocks 7, 8, 9, 10, 11, 13, and 14 are blocking blocks.

3. Iterative deepening A

∗ algorithm

In this section we describe the exact algorithm we used in our

computational experiments, which is the Iterative Deepening A

∗

(IDA

∗) algorithm. The IDA

∗ was first introduced by Korf (1985) in

1985 as a general search method, and has been applied to several

Download English Version:

https://daneshyari.com/en/article/6892516

Download Persian Version:

https://daneshyari.com/article/6892516

Daneshyari.com

https://daneshyari.com/en/article/6892516
https://daneshyari.com/article/6892516
https://daneshyari.com

