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a b s t r a c t 

The Blocks Relocation Problem is an important problem in storage systems. An input instance for it con- 

sists of a set of blocks distributed in stacks where each block is identified by a retrieval number and 

each stack has a same maximum height limit. The objective is to retrieve all the blocks respecting their 

retrieval order and performing the minimum number of relocations. Only blocks at the top of a stack can 

be moved: either a block is retrieved, if it has the highest retrieval priority among the stacked blocks, 

or it is relocated to the top of another stack. Solving this problem is critical in storage systems because 

it saves operational time and resources. In this paper, we present two new lower bounds for the num- 

ber of relocations of an optimal solution. We implemented an exact iterative deepening A 

∗ algorithm 

using these new proposed lower bounds and other well-known lower bounds from the literature. We 

performed several computational experiments to show that the new lower bounds improve the perfor- 

mance of the exact algorithm, solving to optimality more instances than when using other lower bounds 

when given the same amount of time. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

This paper is focused on the Blocks Relocation Problem (BRP) , 

also known as Container Relocation Problem in the literature, 

which generally emerges from storage systems. In storage systems, 

there are several types of items to be stored, such as containers 

and pallets. We will refer to those items as blocks throughout the 

paper. We consider that the blocks are stored in a series of stacks, 

where at each stack one block is above another or at the bottom of 

the stack. This is called the stacking area , which is the most com- 

mon type of storage system of containers. This type of storage only 

allows one to access the top block of a stack, which can be relo- 

cated to the top of another stack or can be removed and placed 

outside the stacking area, a move called retrieval . 

Consider a container terminal where blocks have to be retrieved 

from the stacking area and loaded onto trucks, following a given 

precedence order called retrieval priority . The precedence of these 

items may be motivated by several factors, such as the arriving or- 

der of container transportation trucks or the delivery order of con- 

tainers in a ship. Given a stacking area and the precedence order 
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of the blocks, the objective of BRP is to minimize the number of 

relocations in order to retrieve all blocks. In this paper, we present 

two new lower bounds for the minimum number of relocations, 

which are used in an exact iterative deepening A 

∗ algorithm. 

Kim and Hong (2006) proposed two variations for the BRP. In 

the first one, each block has a unique retrieval priority, and in the 

second one two or more blocks can have the same retrieval prior- 

ity. They proposed a branch and bound algorithm and a fast heuris- 

tic rule to determine the destination stack of each block trying to 

reduce the number of relocations in the future. This rule can be 

used in real time by any search procedure. The authors also intro- 

duced the concept of blocking block , which is a block that is pre- 

venting the retrieval of another block that is below it in the same 

stack. This concept is used as a lower bound. 

Caserta et al. (2009) proposed a binary representation of the 

stacking area, which simplifies the transition from the current state 

of the stacking area to a state generated by a relocation or re- 

trieval. They developed a lookahead mechanism that is adapted to 

this binary representation. 

Lee and Lee (2010) introduced a new variant of the problem 

where each relocation has a cost equal to the distance between the 

two stacks over which the relocation is performed. First, they pre- 

sented a simple heuristic to create a feasible solution. Then, they 

tried to reduce the number of relocations by solving a binary linear 
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Fig. 1. An instance for the BRP with S = 6 , H = 3 , and N = 15 . 

integer program. Finally, they tried to reduce the cost of relocations 

by solving a mixed integer linear program. 

Caserta and Voß (2009) presented a new heuristic, named 

corridor method, to the pre-marshalling problem . In the pre- 

marshalling problem, one is given an initial stacking area and the 

objective is to generate another configuration of it by performing 

only relocations such that the resulting stacking area does not con- 

tain blocking blocks. In another work, Caserta et al. (2011) applied 

the corridor method to the BRP without limiting the height of the 

stacks. 

The BRP was shown to be NP-Hard by Caserta et al. (2012) . They 

also presented a binary linear programming model that generates 

solutions for small instances of the problem. To break this limita- 

tion, realistic assumptions were introduced, which allowed them to 

create a new binary linear programming model and a new heuris- 

tic that was able to get good solutions for medium-sized instances. 

Jovanovic and Voß (2014) proposed a new heuristic approach 

to the BRP, which considers not only the current block to be re- 

located but also the next block to be relocated. They named this 

heuristic by Min-Max. This heuristic reduced by 5% the number of 

relocations on average when compared to solutions generated by 

another heuristic proposed by Caserta et al. (2012) . 

Expósito-Izquierdo et al. (2014) presented several exact algo- 

rithms based on the A 

∗ search algorithm to solve the BRP. They 

found 17 optimal solutions from 45 instances that were consid- 

ered by Caserta et al. (2012) . They also presented a heuristic to 

find high-quality solutions within a short computational time. 

Tanaka and Takii (2016) presented a new lower bound to the 

number of relocations based on previous lower bounds created by 

Kim and Hong (2006) and Zhu et al. (2012) . The use of this new 

lower bound on an exact algorithm resulted in 1.848% more opti- 

mal instances being found than when using these previous lower 

bounds from the literature. 

The use of Pattern Databases (PDBs) in exact algorithms has 

been effectively applied to solve challenging problems such as 16- 

puzzle ( Culberson and Schaeffer, 1998 ) and Rubik’s cube ( Korf, 

1997 ). For the BRP, it was first considered by Ku and Arthanari 

(2016) , which use the concept of abstract states and PDB to shorten 

the exploration of the search space. They compared this method 

with other exact algorithms from the literature, showing that it 

outperforms the other methods regarding the time to find optimal 

solutions. 

Contributions: In this paper, we present two new lower bounds 

for the BRP, where one is purely combinatorial and is denoted 

by LB-LIS. The other one derives from the creation of pattern 

databases (PDB) ( Felner et al., 2004 ) and is denoted by LB-PDB. We 

use the two lower bounds in a general exact iterative deepening A 

∗

algorithm. We also explore, in this exact algorithm, the use of pat- 

tern databases as a way of memorizing part of the search space, 

in the same way as was done by Ku and Arthanari (2016) . The ex- 

act algorithm, when using LB-LIS as a lower bound, found 2% more 

optimal instances than when using other lower bounds from the 

literature. The improved exact algorithm, which uses PDBs to re- 

duce the search space, together with LB-LIS, resulted in 4.1% more 

instances being solved to optimality (5% if we consider the hardest 

instances). 

This paper is organized as follows. In Section 2 we present a 

formal description of the problem while in Section 3 we describe 

the structure of the exact algorithm we use in the computational 

experiments. In Section 4 we present previous lower bounds found 

in the literature and a new one that we propose. In Section 5 we 

present the concept of pattern databases, which is also used to in- 

duce a new lower bound. In Section 6 we present the computa- 

tional results. Finally, in Section 7 we present our conclusions and 

some final remarks. 

2. Problem description 

In the BRP we are given N blocks b 1 , b 2 , . . . , b N distributed in a 

stacking area consisting of S stacks s 1 , s 2 , . . . , s S , with a maximum 

height of H for each stack. The height of a stack s x , denoted by 

height ( s x ), is the number of blocks stacked on it. Thus, in any pos- 

sible configuration of the stacking area we must have height ( s x ) ≤ H 

for all 1 ≤ x ≤ S . Each block b i , for 1 ≤ i ≤ N , has a retrieval priority 

defined as i , which indicates its retrieval order. Therefore, the low- 

est value means the highest priority, so b 1 is the first block to be 

retrieved. 

We denote by t the block with the highest retrieval priority in 

the stacking area at any given moment, also called target block of 

the stacking area, or target block of the instance. We call target 

stack the stack containing block t . Similarly, we denote by t x the 

block with the highest retrieval priority in stack s x at any given 

moment, also called target block of stack s x . 

Since we only have access to the block at the top of any stack, 

there are only two available moves. A relocation is a move s x ⇒ s x ′ 
that takes the top block of stack s x and put it at the top of stack s x ′ , 
where it must be valid that height(s x ′ ) < H before the relocation. 

Also, in the variation that we are considering, a relocation from s x 
is allowed only if the target block t is in s x , so that we can retrieve 

t later, after relocating all blocks above it. The BRP problem under 

this restriction is still NP-hard and this assumption is used in sev- 

eral works from the literature ( Caserta et al., 2012 ). A retrieval is 

a move s x ⇒ s 0 that removes the top block of stack s x from the 

stacking area if such block is t ( s 0 is an artificial stack). 

An instance of the BRP consists of the dimensions of the stack- 

ing area, S and H , the number N of blocks stored, and an initial 

configuration of these blocks. A solution to an instance of the BRP 

is a sequence of relocations and retrievals that clears the initial 

stacking area. Note that the number of retrievals is constant and 

equal to N , so the goal is to retrieve all the blocks respecting their 

retrieval priorities using the minimum number of relocations. See 

Fig. 1 for an example where we have t = 1 and we can only re- 

locate blocks 7 and 10, in this order, before retrieving block 1. Af- 

ter relocating blocks 7 and 10, we retrieve block 1, and then the 

new target block becomes t = 2 . A possible sequence of relocations 

to retrieve blocks 1, 2, 3, and 4 is S = { (s 3 ⇒ s 1 ) , (s 3 ⇒ s 1 ) , (s 3 ⇒ 

s 0 ) , (s 6 ⇒ s 3 ) , (s 6 ⇒ s 0 ) , (s 4 ⇒ s 0 ) , (s 5 ⇒ s 3 ) , (s 5 ⇒ s 3 ) , (s 5 ⇒ s 0 ) } . 
Let b be a block in some stack s x and let a be some block that 

is placed below b in the same stack, i.e., the height of b in s x is 

greater than the height of a . If b > a , then b is called a blocking 

block . In Fig. 1 , blocks 7, 8, 9, 10, 11, 13, and 14 are blocking blocks. 

3. Iterative deepening A 

∗ algorithm 

In this section we describe the exact algorithm we used in our 

computational experiments, which is the Iterative Deepening A 

∗

(IDA 

∗) algorithm. The IDA 

∗ was first introduced by Korf (1985) in 

1985 as a general search method, and has been applied to several 
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