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a b s t r a c t 

We propose a bilevel math programming model for locating a heterogeneous set of sensors to maximize 

the minimum exposure of an intruder’s penetration path through a defended region. Our formulation also 

allows a defender to specify minimum probabilities of coverage for a subset of the located sensors (e.g., 

the most valuable sensors) and for high-value asset locations in the defended region. We reformulate the 

bilevel program to a single-level optimization problem for which instances can be readily solved using a 

commercial solver. Given the locations of a defender’s sensors, we additionally formulate three alternative 

path identification models corresponding to conceptually-motivated intrusion-path metrics. We examine 

a test instance for the air defense of a border region against intrusion by an enemy aircraft; upon iden- 

tifying the optimal, respective defender asset location and intruder routing solutions, we examine the 

intruder-optimal solutions corresponding to each of three alternative metric-specific paths, illustrating 

the relative impact of an intruder choosing an inappropriate metric. Sensitivity analyses are conducted to 

examine the effect of several model parameters on solution quality and required computational effort. 

Published by Elsevier Ltd. 

1. Introduction 

National, group, and individual sovereignty requires protection 

against threats. At the national level, potential threats include the 

illegal or unauthorized movement of people, weapons, or drugs. 

At the group level, corporations seek to defend their computer 

networks against malicious code. Individual sovereignty concerns 

include protection of a residence against burglary. The defense 

against such threats begins at a border or boundary of the re- 

gion under a defender’s control, whether it be physical or virtual. 

Moreover, the defense against threats occurs within a border region , 

wherein a defender will locate and use assets to detect and/or in- 

terdict a would-be intruder. 

Evidence of the growing requirement for border security can be 

seen in a 2017 memorandum from the U.S. Department of Home- 

land Security (DHS) which indicates “the surge of illegal immi- 

gration at the southern border has overwhelmed federal agencies 

and resources and has created a significant national security vul- 

nerability to the United States” ( Kelly, 2017 ). As a result, the U.S. 

House of Representatives Homeland Security Committee passed a 

$10 billion bill ( McCaul, 2017 ) to “deter, impede, and detect illegal 

activity” through the use of integrated surveillance and intrusion 
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detection assets such as the Integrated Fixed Tower (IFT) System 

and the Remote Video Surveillance System (RVSS). IFTs are fixed 

sensors that provide long-range, persistent surveillance by auto- 

matically detecting and tracking targets of interest. Similarly, RVSS 

assets are fixed sensors that use cameras, radio, and microwave 

transmitters to “provide short-, medium-, and long-range persis- 

tent surveillance mounted on stand-alone towers, or other struc- 

tures” ( Alles et al., 2016 ). The bill also sets aside $10 million to 

implement Vehicle and Dismount Exploitation Radars (VADER) in 

border security operations ( McCaul, 2017 ). Since 2006, unmanned 

systems equipped with VADER sensors have been credited with in- 

terdicting over “13,144 pounds of cocaine and 321,330 pounds of 

marijuana worth an estimated $1.8 billion” ( Alles et al., 2016 ). 

Oriented against aerial threats to border security, ground-based 

air defense weapons are emplaced as part of an antiaccess/area- 

denial (A2/AD) strategy to defend against enemy aircraft attempt- 

ing to penetrate a country’s border region during active conflict. 

Many countries have adopted A2/AD strategies ( Schmidt, 2016 ) and 

significantly advanced their Surface to Air Missile (SAM) technol- 

ogy. Over the last 10 years, Russia has developed and fielded the 

S-400 Triumf air defense weapon system which can destroy aerial 

targets at ranges of 40–400 km ( Foss and O’Halloran, 2014 ). This 

highly-effective SAM system is capable of engaging the world’s 

most premier aircraft, as well as cruise missiles and ballistic mis- 

siles. Recent reports indicate the Russian military currently oper- 

ates 39 S-400 battalions, with each battalion consisting of eight 
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launchers and up to 112 missiles, along with radar systems and a 

command post ( Gady, 2017 ). China, Turkey, India, and Saudi Ara- 

bia have all signed contracts for the purchase of multiple S-400 

systems from Russia ( TAS, 2017 ). Motivated by this trend in air de- 

fense posturing, in this study we construct an air defense test in- 

stance as an illustrative border security application. 

Border security is no longer limited to physical borders but 

now includes virtual, software-defined borders, creating vulnera- 

bilities from the economic market to the energy sector. Due to 

recent threats “targeting government entities and organizations in 

the energy, nuclear, water, aviation, and critical manufacturing sec- 

tors” the DHS and the Federal Bureau of Investigation (FBI) re- 

leased an alert “to educate network defenders and enable them 

to identify and reduce exposure to malicious activity” ( DHS, 2017 ). 

This emerging threat is not simply a U.S. problem; in December 

2015, a cyberattack on the Ukrainian power grid left over 225,0 0 0 

people without power ( Lee et al., 2016 ). Daniel Tobok, CEO and 

co-owner of Toronto-based Cytelligence, estimates that cyberat- 

tacks “cost Canada $3 billion to $5 billion per year in proceeds 

to criminals, adding one Calgary energy company was forced to 

pay $20 0,0 0 0 in ransom three years ago to regain control of its 

corrupted digital production systems” ( Healing, 2017 ). In his 2017 

State of the Union Address, European Commission President Jean- 

Claude Juncker said that “cyber-attacks can be more dangerous to 

the stability of democracies and economies than guns and tanks”

( Juncker, 2017 ). 

Common to each of these border security applications is that 

a defender must decide where to locate a set of assets to prevent 

an adversary from traversing through a region; the defender’s as- 

sets may also have differing capabilities to detect or engage the 

adversary; some defensive assets may be important enough to the 

defender because of their high cost or limited supply to warrant 

protection, once emplaced; specific locations of the defended re- 

gion may require preferential coverage due to their importance; 

and an adversary will be able to observe the location of defender 

assets and select a route through the border region to minimize 

their likelihood of detection. 

1.1. Literature review 

Our modeling effort s f or this research focus on imple- 

menting and extending previous work in facility location. 

Schilling et al. (1993) presented a detailed overview of covering 

problems in facility location. They classified models as either a 

Set Covering Problem (SCP) or a Maximal Covering Location Prob- 

lem (MCLP), where coverage is either required or optimized, re- 

spectively. The MCLP was first introduced by Church and ReV- 

elle (1974) to maximize the amount of demand covered within a 

specified service distance by locating a fixed number of facilities. 

White and Case (1974) extended the work of Church and ReV- 

elle (1974) by considering equal weights on all demand points. 

Church (1984) later introduced the MCLP on a planar surface us- 

ing Euclidean and rectilinear distance measures, where potential 

facility locations are no longer discrete (and finite). 

One of the main assumptions of the MCLP is that coverage is bi- 

nary. That is, a demand point is either fully covered or not covered 

at all by a located facility. However, this assumption is often un- 

realistic. Berman and Krass (2002) extended the MCLP to the Gen- 

eralized Maximal Covering Location Problem (GMCLP), allowing for 

“partial coverage of customers, with the degree of coverage being a 

non-increasing step function of the distance to the nearest facility.”

Additionally, Berman et al. (2003) extended the GMCLP by way of 

a gradual covering decay model. Drezner et al. (2004) also solved 

the gradual covering problem on a planar surface. 

Traditional facility location models do not address the need to 

prevent the passage of an adversary into friendly territory, which 

is the main concern for border security applications. However, a 

related field of research pertaining to the location of sensors in 

a Wireless Sensor Network (WSN) presents coverage models de- 

signed specifically for such a purpose. One of the three main cov- 

erage problems discussed in WSNs is barrier coverage ( Cardei and 

Wu, 2006 ). In the context of WSNs, “a given belt region is said 

to be k-barrier covered with a sensor network if all crossing paths 

through the region are k-covered , where a crossing path is any path 

that crosses the width of the region completely” ( Kumar et al., 

2005 ). A path is said to be k-covered if it intersects at least k sen- 

sors’ sensing ranges ( Huang and Tseng, 2005 ). 

As the defender, the goal of a barrier coverage model is to 

locate a set of sensors S such that some chosen measure of 

coverage is maximized. Alternatively, an attacker seeks to in- 

terdict or locate areas of the region where the value of the 

coverage measure is minimized. One such measure of cover- 

age often used in WSN models is exposure . First introduced by 

Meguerdichian et al. (2001b) , exposure can informally be thought 

of as the “expected average ability of observing a target in the sen- 

sor field.” More formally, exposure is defined as “an integral of 

a sensing function that generally depends on distance from sen- 

sors on a path from a starting point p S to destination point p D ”

( Meguerdichian et al., 2001b ). Unlike some coverage metrics, the 

element of time is important for exposure, since the ability of a 

sensor to detect a target can improve as the sensing time (i.e., ex- 

posure) increases. 

For a sensor s , the general sensing model S at an arbitrary point 

p is: 

S(s, p) = 

λ

[ d(s, p)] K 
, (1) 

where d ( s, p ) is the Euclidean distance between the sensor s 

and the point p , and positive constants λ and K are technology- 

dependent parameters ( Meguerdichian et al., 2001b ). The parame- 

ter λ can be thought of as the energy emitted by a target, and K is 

an energy decay factor, typically ranging from 2 to 5 ( Amaldi et al., 

2008 ). 

The exposure of an object in the sensor field dur- 

ing the interval [ t 1 , t 2 ] along the path p ( t ) is defined by 

Meguerdichian et al. (2001b) as: 

E(p(t) , t 1 , t 2 ) = 

∫ t 2 

t 1 

I 

(
F , p(t) 

)∣∣∣∣dp(t) 

dt 

∣∣∣∣dt, (2) 

wherein the sensor field intensity I ( F, p ( t )) is implemented using 

an All-Sensor Field Intensity model or a Closest-Sensor Field Intensity 

model, depending on the application and types of sensors used. 

The All-Sensor Field Intensity model is a summation of the sensing 

function values (1) from target p to all sensors in the sensor net- 

work, defined as I A (F , p) = 

∑ n 
i =1 S(s i , p) , whereas the Closest-Sensor 

Field Intensity model only utilizes the sensing function value of the 

closest sensor to the target ( Meguerdichian et al., 2001b ). 

Using the definition of exposure, 

Meguerdichian et al. (2001b) presented an algorithm to find 

the minimal exposure path in a sensor network. The algorithm 

first transforms the problem into a discrete domain utilizing a 

generalized grid approach and then creates an edge-weighted 

graph. The algorithm then applies Dijkstra’s single-source shortest- 

path algorithm ( Dijkstra, 1959 ) to find the minimal exposure 

path from the source point p S to the destination point p D . 

Meguerdichian et al. (2001c) also extended this initial work by 

developing a localized minimal exposure path algorithm using 

Voronoi diagrams. 

Understanding that signals traveling from a target to a sen- 

sor are often corrupted by noise, Clouqueur et al. (2002) added 

an Adaptive White Gaussian Noise term N i , i = 1 , ..., n, to the ini- 

tial sensor model in Eq. (1) . Clouqueur et al. (2002) also pre- 
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