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a b s t r a c t 

This paper presents a new algorithm for the multiobjective minimum spanning tree problem that can be 

used with any number of criteria. It is based on a labelling algorithm for the multiobjective shortest path 

problem in a transformed network. Some restrictions are added to the paths (minimal paths) in order 

to obtain a one-to-one correspondence between trees in the original network and minimal paths in the 

transformed one. The correctness of the algorithm is proved as well as the presentation of a short exam- 

ple. Finally, some computational experiments were reported showing the proposed method outperforms 

the others in the literature. A deep study is also done about the number of nondominated solutions and a 

statistical model is presented to predict its variation in the number of nodes and criteria. All the test in- 

stances used are available through the web page http://www.mat.uc.pt/ ∼zeluis/INVESTIG/MOMST/momst. 

htm . 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The minimum spanning tree (MST) problem is a classical com- 

binatorial optimization problem studied since the beginning of the 

last century. It was proposed by Boru ̇vka (1926) where he de- 

scribes an algorithm which runs in O ( m ln n ) time to solve a prob- 

lem with n nodes and m edges. Other methods were proposed like 

Prim’s algorithm, which was first developed by Jarník (1930) and 

later rediscovered by Prim (1957) and Dijkstra (1959) . It has time 

complexity of O ( m ln n ), but it can be improved to O (m + n ln n ) 

if the Fibonacci heap is used as data-structure ( Fredman and Tar- 

jan, 1987 ). Kruskal (1956) proposed two methods: the well-known 

Kruskal’s algorithm which runs in O ( m ln n ) time and the reverse- 

delete algorithm with time complexity of O ( m ln n (ln ln n ) 3 ), using 

the Thorup algorithm ( Thorup, 20 0 0 ), working with the edges in 

the reverse cost order. A more detailed development of the be- 

ginnings of the MST problem, its subsequent evolution and other 

methods can be found in Graham and Hell (1985) ; Gupta (2015) ; 

Karger et al. (1995) ; Nešet ̌ril and Nešet ̌rilová (2012) and Pettie and 

Ramachandran (2002) . 

The MST was motivated by a practical application in or- 

der to minimize the cost of the construction of a power line 

network in Southern Moravia after World War I ( Graham and 

Hell, 1985 ). Despite the practical motivation in the origin of 
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the MST problem, some interesting theoretical properties can be 

derived from this problem ( Dasgupta et al., 2006 ) as well as 

other kind of applications in different fields of science, such 

as finance ( Brookfield et al., 2013 ), ecotoxicology ( Devillers and 

Dore, 1989 ), clustering analysis ( Duran and Odell, 2013 ), weather 

forecasting ( Gombos et al., 2007 ), image registration and seg- 

mentation ( Meyer and Najman, 2013 ). The MST is also related 

to other combinatorial optimization problems like the Euclid- 

ian traveling salesman problem ( Christofides, 1976 ), the multi- 

terminal minimum cut problem ( Dahlhaus et al., 1994 ), matroids 

( Edmonds, 1971 ), the minimum-cost weighted perfect matching 

( Supowit et al., 1980 ) and the Steiner tree problem ( Wei et al., 

2015 ). To obtain more details about MST properties, applications 

or related problems, the reader is referred to Bazlamaçc and 

Hindi (2001) ; Graham and Hell (1985) , Wikipedia (2017) , Wu and 

Chao (2004) and Zsak (2006) . 

There are several variants of the MST problem in the lit- 

erature like the Euclidean MST ( Agarwal et al., 1991 ), the de- 

gree constrained MST ( Torkestani, 2013 ), the k -smallest span- 

ning trees ( Gabow, 1977 ), the arborescence ( Georgiadis, 2003 ), 

the hop-constrained and the diameter-constrained minimum span- 

ning tree ( Gouveia et al., 2011 ), the minimum labelling span- 

ning tree ( Krumke and Wirth, 1998 ), the maximum spanning tree 

( McDonald et al., 2005 ), the capacitated MST ( Öncan, 2007 ), k th 

MST ( Ravi et al., 1996 ), the delay MST ( Salama et al., 1997 ) and 

the dynamic MST ( Spira and Pan, 1975 ). Other variants of the 

MST problem are presented in Wikipedia (2017) and Wu and 

Chao (2004) . 
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In this work, we are focused on the multiobjective MST 

(MOMST) problem, which is a straightforward generalization of the 

classical MST problem where several weights are associated with 

each edge. In this problem, we aim to find the Pareto front, that 

is, a set of solutions for which it is not possible to improve one of 

the criteria without worsening any of the others. Regarding com- 

plexity analysis, it is NP-complete ( Camerini et al., 1983 ) and in- 

tractable ( Hamacher and Ruhe, 1994 ). The first algorithm proposed 

to the MOMST problem is due to Corley in 1985 ( Corley, 1985 ) 

which is based on Prim’s algorithm, but it can lead us to a solution 

set with non-efficient spanning trees ( Hamacher and Ruhe, 1994 ). 

Hamacher and Ruhe (1994) proved that the efficient set is not 

connected when two spanning trees are considered adjacent (i.e., 

they have n − 2 edges in common). He also provides an exact al- 

gorithm to compute the supported efficient spanning trees in the 

biobjective MST problem. The majority of the papers in the litera- 

ture about this issue covers only the biobjective case ( Clímaco and 

Pascoal, 2012; Ehrgott, 2005 ). Additionally, they deal mainly with 

approximate techniques, such as evolutionary algorithms ( Knowles 

and Corne, 2001; Moradkhan and Browne, 2006 ), genetic algorithm 

( Han and Wang, 2005; Sanger and Agrawal, 2010; Zhou and Gen, 

1999 ), local search ( Andersen et al., 1996 ) and ant colony ( Cardoso, 

2006; Li et al., 2013 ). 

As far as we know, only 3 types of exact algorithms are pro- 

posed to find the full Pareto front: the exhaustive search, dy- 

namic programming ( Di Puglia Pugliese et al., 2015 ) and two- 

phase methods ( Ramos et al., 1998; Steiner and Radzik, 2008 ). 

The exhaustive search can only be used in a very small graphs 

because the number of spanning trees increases quickly with the 

number of the nodes; for instance, in a complete graph with 

n nodes, there are n n −2 spanning trees ( Cayley, 1889 ). In the 

two-phase method, firstly the set of supported efficient span- 

ning trees is computed. Then, in the second phase, the unsup- 

ported efficient spanning trees are searched inside “viable regions”

formed by two adjacent supported efficient solutions. Steiner and 

Radzik (2008) showed that their approach, using a ranking proce- 

dure to search the unsupported solutions, outperforms the branch- 

and-bound technique applied in Ramos et al. (1998) . However, the 

two-phase method is designed for the biobjective problems and 

the generalization for more than two criteria is hard to accom- 

plish, ( Ehrgott and Gandibleux, 20 0 0 ). An extended review of the 

existing methods and properties for the MOMST problem can be 

found in Cardoso (2006) ; Ehrgott and Gandibleux (20 0 0, 20 02) and 

Ruzika and Hamacher (2009) . 

In this paper, we propose a new method based on a network 

transformation which produces a one-to-one correspondence be- 

tween spanning trees in the original network and paths in the 

transformed one. Consequently, a labelling algorithm can be used 

taking advantage of its efficiency, easy implementation and gen- 

eralization for more than 2 criteria. Applying this method to the 

transformed network, we find the Pareto solutions in the original 

network. 

Regarding computational experiments, only one ( Di Puglia 

Pugliese et al., 2015 ) of the papers, which consider the compu- 

tation of the entire Pareto front, reports results for more than 

two objectives. The remainder focus exclusively on the bicriteria 

case. Furthermore, the lack of information about the tested prob- 

lems prevents the replication of the computational experiments by 

other authors and the comparison of the results among different 

papers. In fact, in the papers analysed, the size of the networks 

varies from a dozen to hundreds of nodes, but there is no ref- 

erence to the number of Pareto solutions. However, it is known 

the higher the number of solutions in the Pareto front, the larger 

the computational cost. According to the type of network consid- 

ered, it is possible to build a small-size network with a large num- 

ber of nondominated solutions and a large-size network with the 

opposite situation. This paper contributes to reducing the lack of 

information on this topic by providing a model to estimate the 

variation of the number of Pareto solutions with the number of 

nodes and the number of criteria. In addition, a public database 

with benchmark instances for this problem was created, which 

is available through the web page http://www.mat.uc.pt/ ∼zeluis/ 

INVESTIG/MOMST/momst.htm . 

The paper is organized as follows. In Section 1 , an introduction 

to the MST and the MOMST is presented, while Section 2 gives 

us the formal definition and notation used throughout the pa- 

per. Section 3 describes the new algorithm and the proof of its 

correctness. The computational results and the model to predict 

the number of Pareto solutions are reported in Section 4 . Finally, 

Section 5 summarizes the paper and conclusions. 

2. Definitions and notation 

A graph (or an undirected graph) is an ordered pair G = (N, E) 

where: 

• N = { 1 , . . . , n } is the set of nodes; 
• E = { e 1 , . . . , e m 

} is the set of edges, where each edge e k ( k = 

1 , . . . , m ) is a 2-element subset of N . Thus, e k will be repre- 

sented by an unordered pair [ i , j ] with i , j ∈ N and consequently 

[ i, j] = [ j, i ] . Let E i be the subset of E containing the edges 

linked to node i , that is, E i = { e � ∈ E : e � = [ i, j] , for some j ∈ 

N} . Multi-edges occur when there are different edges defined 

between the same pair of nodes. 

A subgraph of G is a graph whose set of nodes is a subset of N 

and whose set of edges is a subset of E . 

A path p = 〈 v 0 , e 1 , v 1 , . . . , e � , v � 〉 between s and t is a sequence 

of nodes and edges such that 

• v i ∈ N, ∀ i ∈ { 0 , . . . , � } ; 
• s = v 0 and t = v � ; 
• e i = [ v i −1 , v i ] ∈ E, ∀ i ∈ { 1 , . . . , � } . 

If p = 〈 v 0 , e 1 , v 1 , . . . , e � , v � 〉 and q = 〈 w 0 , f 1 , w 1 , . . . , f k , w k 〉 
represent two paths in G where v � = w 0 , then p♦q = 

〈 v 0 , e 1 , v 1 , . . . , e � , v � = w 0 , f 1 , w 1 , . . . , f k , w k 〉 represents a path in G 

between v 0 and w k . 

A path can be represented only by the sequence of edges. If 

there are no multiple edges, it can also be represented only by the 

sequence of nodes. We denote by P s,t the set of paths from node s 

to node t . 

A graph G is connected if there is a path between each pair of 

nodes in N . A tree T is a connected subgraph of G with n = | N| 
nodes and n − 1 edges. We denote by T X the set of trees whose set 

of nodes is X ⊆ N . 

A graph is directed if each edge has an orientation. In this 

case, e k will be represented by an ordered pair ( i , j ) and it will be 

called arc . Note that in this case (i, j) 	 = ( j, i ) . In a directed graph, 

multiple-arcs are defined as arcs between the same pair of nodes 

with the same direction. A path in a directed graph has to preserve 

the arc orientation. An undirected graph can be transformed into a 

directed graph G 

d = (N, A ) , where each edge e = [ i, j] ∈ E defines 

two arcs in A , ( i , j ) and ( j , i ), between i and j with opposite direc- 

tions. 

A network is a triplet ( N , E , c ) where: 

• ( N , E ) is a graph; 
• c is a vectorial cost function that assigns the vector cost 

c([ i, j]) ∈ R 

k to the edge [ i , j ], 

where k is the number of objectives or criteria. We will assume 

that all the components of the vector cost are nonnegatives. 

Fig. 1 shows a network example that will be used throughout 

the paper. The cost of a path p , c ( p ), is the sum of the cost for 

http://www.mat.uc.pt/~zeluis/INVESTIG/MOMST/momst.htm


Download English Version:

https://daneshyari.com/en/article/6892533

Download Persian Version:

https://daneshyari.com/article/6892533

Daneshyari.com

https://daneshyari.com/en/article/6892533
https://daneshyari.com/article/6892533
https://daneshyari.com

