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a b s t r a c t 

We focus on optimization models involving individual chance constraints, in which only the right-hand 

side vector is random with a finite distribution. A recently introduced class of such models treats the re- 

liability levels / risk tolerances associated with the chance constraints as decision variables and trades off

the actual cost / return against the cost of the selected reliability levels in the objective function. Lever- 

aging recent methodological advances for modeling and solving chance-constrained linear programs with 

fixed reliability levels, we develop strong mixed-integer programming formulations for this new variant 

with variable reliability levels. In addition, we introduce an alternate cost function type associated with 

the risk tolerances which requires capturing the value-at-risk ( VaR ) associated with a variable reliability 

level. We accomplish this task via a new integer linear programming representation of VaR . Our compu- 

tational study illustrates the effectiveness of our mathematical programming formulations. We also apply 

the proposed modeling approach to a new stochastic last mile relief network design problem and provide 

numerical results for a case study based on the real-world data from the 2011 Van earthquake in Turkey. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In many decision making problems under uncertainty it is de- 

sired to account for the probability of certain unfavorable events. 

This is very much in agreement with the concept of reliability of- 

ten used to characterize the quality of service. In a wide range 

of domains, applications concerned with such issues (the proba- 

bility of meeting demand or the reliability of a system) give rise to 

mathematical programming models that involve chance (or prob- 

abilistic) constraints. Areas of application of chance-constrained 

optimization models include but are not restricted to produc- 

tion planning, supply chain management, power system plan- 

ning and design, financial portfolio optimization, and humani- 

tarian relief network design. For a thorough overview of the 

applications of chance-constrained optimization models and the 

corresponding theory and numerical methods, we refer the 

reader to Kall and Wallace (1994) , Prékopa (1995, 2003) , 

Dentcheva (2006) , Shapiro et al. (2009) , and the references therein. 
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There are two main types of chance constraints: joint and in- 

dividual (separate) chance constraints. A joint chance constraint 

imposes that a set of goal constraints (inequalities) hold together 

with a high probability. In contrast, an individual chance constraint 

is introduced to account for the probability of a single goal con- 

straint. From a modeling point of view, the problem of interest de- 

termines the appropriate type of chance constraint. As discussed 

in Haneveld and van der Vlerk (2015) , a joint chance constraint 

is more fitting when the individual goal constraints collectively 

describe one single goal. Otherwise, if the individual goal con- 

straints describe different goals, it makes more sense to consider 

them separately. In this case, the ability to vary the reliability lev- 

els associated with the separate chance constraints provides us 

with a flexible modeling framework, which can prioritize the set 

of goals at hand. In practice, another important criterion is the 

computational tractability of the resulting mathematical program- 

ming formulations. Optimization with a joint chance constraint is 

generally significantly more challenging than optimization with in- 

dividual chance constraints (see, e.g., Küçükyavuz, 2012; Lejeune, 

2012; Luedtke et al., 2010 ). Enforcing a joint chance constraint with 

a high probability level on a large set of goal constraints typi- 

cally leads to individual probability levels close to one, and con- 

sequently, may result in very conservative solutions. As a partial 
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remedy, the decision maker may opt for decreasing the probability 

level of the joint chance constraint, but this exacerbates the com- 

putational difficulties. Therefore, one may prefer to employ indi- 

vidual chance constraints even if a joint chance constraint is more 

appropriate from a modeling perspective. In particular, it is natural 

to use individual chance constraints to develop a computationally 

tractable approximation of a joint chance-constrained optimization 

model (see, e.g., Haneveld and van der Vlerk, 2015; Prékopa, 2003 ). 

Our study is dedicated to individual chance-constrained linear 

programs (LP), where the uncertainty is restricted to the right- 

hand sides of the probabilistic constraints, and the random param- 

eters have discrete distributions. The convexity of the feasible re- 

gion is still preserved in this structure given the fixed probability 

levels. A general form of the classical LP with multiple individual 

chance constraints is then given by: 

( MICC ) min 

x 
c T x (1) 

s.t. P (T k x ≥ ξk ) ≥ 1 − εk , ∀ k = 1 , . . . , m (2) 

x ∈ X . (3) 

Here, the feasible set associated with the deterministic constraints 

is represented by the polyhedron X ⊆ R 

n + . We assume that T is a 

deterministic m × n matrix with its k th row denoted by T k , and 

ξ = (ξ1 , . . . , ξm 

) T is an m -dimensional random vector with a finite 

support. The realizations of the random vector ξ are denoted by ξi 

with corresponding probabilities p i > 0 for i ∈ { 1 , . . . , N} . The indi- 

vidual chance constraints (2) ensure that the stochastic (goal) con- 

straint T k x ≥ ξ k holds with a probability at least equal to 1 − εk 

for all k ∈ { 1 , . . . , m } , where εk is the risk tolerance correspond- 

ing to the reliability level 1 − εk . Note that integrality requirements 

can also be incorporated into the definition of X , and our entire 

modeling and solution framework directly carries over to individ- 

ual chance-constrained integer linear programs as well. 

It is well-known that ( MICC ) can be reformulated as a linear 

program when the risk tolerances εk , k = 1 , . . . , m, are input pa- 

rameters specified by the decision maker. Alternatively, we can 

consider the risk tolerances / reliability levels as decision variables, 

and the resulting mathematical models can be put into good use 

in several ways at the expense of additional complexity. For in- 

stance, ( MICC ) with a set of additional constraints on the vari- 

able/adjustable reliability levels is presented in Prékopa (2003) –

see formulation (5.10) – as an approximation of a joint chance- 

constrained optimization model. This approximation optimizes the 

risk tolerances and is a natural extension of the classical Bonferroni 

approximation, which is based on the particular choice of equal 

risk tolerances. Another motivation for varying the values of the 

reliability levels is to perform a Pareto analysis in order to extract 

insights about the trade-off between the actual cost/return factors 

and the cost associated with the probabilities of the undesirable 

events of interest ( Rengarajan et al., 2013; Rengarajan and Morton, 

2009 ). In a similar vein, Shen (2014) proposes a new class of op- 

timization models with adjustable reliability levels, where the au- 

thor incorporates a linear cost function of the individual risk toler- 

ances into the objective function (1) . Lejeune and Shen (2016) fol- 

low this line of research in the context of joint chance-constrained 

optimization. They consider two types of a joint constraint – with 

a deterministic technology matrix T on the left-hand side (ran- 

domness exists only on the right-hand side) and with a ran- 

dom technology matrix T – and develop effective mathematical 

programming formulations based on a Boolean modeling frame- 

work. We also refer to Lejeune and Shen (2016) for a detailed re- 

view on studies which consider a trade-off between the conflicting 

cost/return criteria and reliability objectives. 

Our study is directly related to and motivated by Shen (2014) . 

The author presents a mixed-integer linear programming (MIP) re- 

formulation for ( MICC ) with adjustable risk tolerances. However, 

the reformulation of the chance constraints relies on the classical 

big- M paradigm and solving large instances presents a formidable 

challenge due to the well-known weakness of the LP relaxations 

of formulations featuring big- M s. Our primary objective in this pa- 

per is therefore to offer a computationally effective MIP reformu- 

lation of ( MICC ) when the reliability levels are treated as decision 

variables. To this end, we exploit recent methodological advances 

for modeling and solving chance-constrained linear programs with 

fixed reliability levels. In particular, we use a modeling approach 

similar to that presented in Luedtke et al. (2010) . The fundamen- 

tal idea is to rewrite the chance constraints (2) in the form of 

T k x ≥ z k , where z k corresponds to the (1 − εk ) th quantile of the 

random component ξ k for k ∈ { 1 , . . . , m } . Variable reliability lev- 

els render the quantile values denoted by z k , k ∈ { 1 , . . . , m } , vari- 

able as well, and reformulating the chance constraints requires be- 

ing able to express the quantile values as functions of the relia- 

bility level variables. To this end, we develop two alternate ap- 

proaches to express the decision variables z k , k ∈ { 1 , . . . , m } . The 

first representation is based on the mixing inequalities proposed 

by Luedtke et al. (2010) . The authors study the mixing set with 

a knapsack constraint arising in the deterministic equivalent for- 

mulation of a joint chance-constrained optimization model with a 

finitely distributed random right-hand side and a fixed reliability 

level. It turns out that the results of this work can be applied to 

individual chance-constrained optimization models with adjustable 

risk tolerances as well. An alternate second representation arises 

from using a different set of binary variables to identify the sce- 

narios under which the goal constraints are violated. The result- 

ing MIP formulations scale very well with an increasing number of 

scenarios and outperform the current state-of-the-art based on the 

big- M type of constraints by a significant margin – see Section 5 . 

Therefore, one noteworthy contribution of our work is to highlight 

the existence and efficacy of alternate formulations for individ- 

ual chance-constrained (integer) linear programs with and without 

variable risk tolerances and make recent methodological progress 

in modeling and solving chance-constrained optimization models 

more accessible to practitioners. 

Optimization capturing the trade-off between the actual cost 

factors and the cost of the risk tolerances associated with the 

chance constraints is a fairly recent research area, and such a 

hybrid modeling approach has promise to be applied in differ- 

ent fields. In this context, we elaborate on how to construct a 

cost function of the variable reliability levels and extend/modify 

Shen (2014) ’s model by quantifying the cost of reliability with a 

different perspective. Ultimately, we apply the proposed modeling 

approach to humanitarian relief logistics, where it may be essential 

to consider multiple and possibly conflicting performance criteria 

– such as accessibility and equity, see, e.g., Noyan et al. (2016) . 

In particular, we focus on balancing the trade-off between acces- 

sibility and the level of demand satisfaction in the context of post- 

disaster relief network design. We introduce a new stochastic last 

mile distribution network design problem, which determines the 

locations of the Points of Distribution (PODs), the assignments of 

the demand nodes to PODs, and the delivery amounts to the de- 

mand nodes while considering the equity and accessibility issues 

and incorporating the inherent uncertainties. The studies that con- 

sider decisions related to the locations of the last mile facilities are 

scarce, and as emphasized in Noyan et al. (2016) , the majority of 

these studies either assume a deterministic setting and/or do not 

incorporate the concepts of accessibility and equity. Our study con- 

tributes to the humanitarian relief literature by introducing a new 

hybrid supply allocation policy and developing a new risk-averse 

optimization model, which is well-solved with the proposed MIP 
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