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a b s t r a c t 

Phasor Measurement Units (PMUs) are measuring devices that, when placed in electrical networks, ob- 

serve their state by providing information on the currents in their branches (transmission lines) and 

voltages in their buses. Compared to other devices, PMUs have the capability of observing other nodes 

besides the ones they are placed on. Due to a set of observability rules, depending on the placement de- 

cisions, the same number of PMUs can monitor a higher or smaller percentage of a network. This leads 

to the optimization problem hereby addressed, the PMU Placement Problem (PPP) which aims at deter- 

mining the minimum number and location of PMUs that guarantee full observability of a network at 

minimum cost. 

In this paper we propose two general mathematical programming models for the PPP: a single-level 

and a bilevel integer programming model. To strengthen both formulations, we derive new valid inequal- 

ities and promote variable fixing. Furthermore, to tackle the bilevel model, we devise a cutting plane 

algorithm amended with particular features that improve its efficiency. The efficiency of the algorithm 

is validated through computational experiments. Results show that this new approach is more efficient 

than state-of-the-art proposals. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Context. Phasor Measurement Units (PMUs) are measuring devices 

that, by providing time synchronized phasor measurements, allow 

monitoring of a electrical power network ( Phadke, 1993 ). When in- 

stalled in a bus (node) of a network, a PMU measures the voltage 

of that bus and the currents following across a given number of 

incident branches. The number of currents that can be measured 

depends on the number of channels of the device. Furthermore, 

voltages at the buses incident to those branches can be inferred 

from Ohm’s law. For nodes with no associated load nor generation 

(zero-injection nodes), information about other nodes can be used 

by applying Kirchoff’s current law. To the cascade process associ- 

ated to the inference of values, we call propagation and say that 

a node (branch) is observed if we can infer its associated electric 

values. 

Inference of values based on the above mentioned electrical 

laws allows for full monitoring (observability) of a network with 

a number of PMUs that is less than the number of buses. That 

value can be minimized if we optimize the PMU placement: de- 
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pending on the placement decisions, the same number of PMUs 

can monitor a higher or smaller percentage of a network. The PMU 

Placement Problem (PPP) addresses this optimization goal: it aims 

at determining the minimum number of PMUs (and their loca- 

tion) that guarantee full observability of a network at minimum 

cost. The problem was proven to be NP-complete both for net- 

works without zero-injection nodes, as it reduces to the dominat- 

ing set problem ( Garey and Johnson, 1979 ), and for the case where 

all nodes are zero-injection, where we have the power dominating 

set ( Haynes et al., 2002 ). 

Literature review. Both exact methods, based on Integer Program- 

ming (IP) and heuristics were proposed in the literature to ad- 

dress the PPP. In terms of IP models, Xu and Abur (2004) were 

the first proposing an integer nonlinear formulation to solve 

the problem. In their model the depth of propagation of the 

observability rules is limited. The model was later linearized 

by Dua et al. (2008) that studied the multiplicity of optimal 

PMU placements. Gou (2008) applied similar formulations to 

study the cases with redundancy and incomplete observability. 

Sodhi et al. (2010) also addressed the PPP. However, they only 

considered Ohm’s law for value inference. This significantly sim- 

plifies the problem and results in solutions with a larger number 

of PMUs. Aminifar et al. (2010) proposed a linear IP model where 
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PMUs may have a different number of channels. Later their propa- 

gation model was incorporated by Fan and Watson (2015) into a 

novel integer linear formulation with an exponential number of 

variables. PMUs with varying costs were also considered in Fan and 

Watson (2015) . In both papers this propagation model of the ob- 

servability rules is limited as proven by their computational re- 

sults that attain solutions with more PMUs than others already 

found in the literature. Finally, Poirion et al. (2016) studied the 

PPP restricted to 1-channel capacity (the PMU has capacity to ob- 

serve two nodes and the respective transmission line). To the best 

of our knowledge, this is the first study that properly models the 

propagation of the observability rules. They propose an integer lin- 

ear program and an equivalent bilevel program. The reader is ad- 

dressed to Manousakis et al. (2011) ; 2012 ) for an updated state-of- 

the art on formulations and solution techniques. 

Besides mathematical formulations, several heuristics with an 

emphasis on meta-heuristics, were presented in the literature, 

being thoroughly reviewed in Nazari-Heris and Mohammadi- 

Ivatloo (2015) . Some of the most relevant work mentioned 

in that survey is referenced next. Genetic Algorithms were 

used by Mohammadi-Ivatloo (2009) , Marín et al. (2003) and 

Aminifar et al. (2009) . Nuqui and Phadke (2005) combine 

the so called tree search placement technique with Simulated 

Annealing, while in Mesgarnejad and Shahrtash (2008) and 

Koutsoukis et al. (2013) Tabu Search approaches are presented. 

Hajian et al. (2007) and Ahmadi et al. (2011) designed methods 

based on particle swarm optimization. Finally, a Chemical Reac- 

tion method is build by Xu et al. (2013) . The drawback of heuristic 

methods is that there is no guarantee of optimality of the solutions 

computed. 

The computational complexity of four variants of the PPP were 

investigated by Gyllstrom et al. (2012) : (1) minimize the number 

of PMUs such that full observability is guaranteed, (2) maximize 

the number of observed buses for a fixed number of PMUs, (3) 

minimize the number of PMUs such that full observability is en- 

sured, as well as redundancy, and (4) maximize the number of 

observed buses for a fixed number of PMUs and ensure redun- 

dancy. Their work generalizes the complexity results by Brueni and 

Heath (2005) , which proved that even for planar bipartite graphs 

the decision version of the PPP is already NP-complete. 

Paper contributions and organization. In this paper we extend the 

work by Poirion et al. (2016) in the following directions: we adapt 

their IP models for the general PPP, implementing observability 

rules for all types of nodes and considering unconstrained PMU 

capacity. To strengthen the mathematical models we derive new 

valid inequalities and promote variable fixing. Furthermore, an- 

other type of valid inequalities fully characterizing the PPP’s fea- 

sible set is derived together with a polynomial time algorithm that 

improves those inequalities. This leads to dominant inequalities 

and, as a byproduct, to an upper bound on the solution. Finally, 

we incorporate these ingredients in a cutting plane fashion algo- 

rithm to solve the problem at hand. We also extend those results 

to two problem variants: the L -capacity PMU, with L ≥ 1, and the 

variable cost PMU. In this last problem we consider the case where 

PMUs may have different capacities and associated costs. 

The paper is organized as follows. Section 2 states the PMU 

Placement problem, establishes general notation and presents two 

mathematical formulations: the observability propagation model 

(OPM) and a bilevel programming model. Section 3 discusses valid 

inequalities for the set of feasible PMU placements ( i.e. , decision 

plans that lead to full observability) and variable fixing for optimal 

solutions. To solve the bilevel mathematical programming formula- 

tion, these theoretical results plus extra crucial enhancements are 

gathered to build the algorithm presented in Section 4 . We validate 

the efficiency of our approach through computational results pre- 

Fig. 1. Diamonds represent zero-injection nodes and circles are any node in V 

(zero- or non zero-injection). The gray nodes are observed; the white nodes be- 

come observed by (a) Rule 2, (b) Rule 3. 

sented in Section 5 . Section 6 summarizes our contributions and 

provides future research lines in this context. Flowcharts of our al- 

gorithms can be found in Appendix A . 

2. Problem statement and formulations 

Consider a power system network (PSN) that can be repre- 

sented by an undirected graph G = (V, E) , where V and E re- 

spectively represent sets of buses (nodes) and transmission lines 

(edges). We assume that if ( i, j ) ∈ E then ( j, i ) ∈ E . The neighborhood 

N ( i ) for i ∈ V is the set of buses adjacent to i : N(i ) = { j | (i, j ) ∈ E} , 
and define N [ i ] = N(i ) ∪ { i } . Furthermore, the set of nodes V in G 

can be formally partitioned into two subsets: the set of nodes with 

no associated generation or load, so called zero-injection nodes, 

and the set of nodes with associated generation or load, non zero- 

injection nodes. 

A phasor measurement unit (PMU) is a device that allows to 

monitor the state of a PSN. It can measure the voltage of the bus 

it is placed in and the current in all the adjacent lines. A bus is 

said to be observed if its voltage is know, while a transmission 

line is observed if its current is known. A PSN is fully observed 

if the voltage and currents in all its buses and transmission lines 

are known. Furthermore, based on two fundamental electrical cir- 

cuit laws, Ohm’s law and Kirchoff’s current law, additional voltages 

and currents can be obtained. 

• Ohm’s law states that the current I ij in line ( i, j ) is I i j = 

V i −V j 
R i j 

, 

where R ij is the resistance of the line, and V i , V j are the poten- 

tials (voltages) of nodes i and j , respectively. 

• Kirchhoff’s current law states that for a zero-injection bus i , ∑ 

j∈ N(i ) I i j = 0 . 

These laws support the following set of observability rules 

where, for simplicity of explanation, we assume that PMUs have 

unlimited capacity and can observe an unlimited number of ele- 

ments of the network. 

Rule 1: A node i is observed if node i or one of its neighbors has a 

PMU; 

Rule 2: A zero-injection node i is observed if all its neighbors are 

observed (see Fig. 1 (a)); 

Rule 3: If a zero-injection node j and all its neighbors, except for 

node i , are observed then i is observed (see Fig. 1 (b)). 

These rules have a cascade propagation nature. Fig. 2 illustrates 

observability propagation, for a given PSN with PMUs placed in 

nodes 1 and 9. Initially (step 0), due to rule 1 nodes 2, 3, 7 and 

8 are observed. Then, in a second step, as 1,2, and 3 are observed, 

by rule 3 node 4 becomes observed. Further, Rule 2 is applied to 

node 6 as 4, 7 and 8 are observed. Finally, in the last step, again 

by rule 3, node 5 becomes observed. 

Definition 2.1. The PMU placement problem (PPP) can be defined 

as follows: find a placement for the minimum number of PMUs 

that ensures full observability. 

In the remaining of this section we propose generalizations of 

the two formulations presented in Poirion et al. (2016) and discuss 
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