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a b s t r a c t 

Many objective optimization problems have turned out to be a considerable challenge for evolutionary 

algorithms due to the difficulty of finding and visualizing high-dimensional Pareto frontiers. Fortunately, 

however, the task can be simplified whenever an interaction with a human decision maker is possible. In- 

stead of finding the entire Pareto frontier, the evolutionary search can be guided to the parts of the space 

that are most relevant for the decision maker. In this paper, we propose an interactive method for solving 

many objective optimization problems. Drawing on the recent developments in multiple criteria decision 

making, we introduce an effective strategy for leveraging polyhedral preference cones within an evolu- 

tionary algorithm. The approach is mathematically motivated and is applicable to situations, where the 

user’s preferences can be assumed to follow an unknown quasi-concave and increasing utility function. In 

addition to considering the preference cones as a tool for eliminating non-preferred solution candidates, 

we also present how the the cones can be leveraged in approximating the directions of steepest ascent to 

guide the subsequent search done by the evolutionary algorithm through a proposed merit function. To 

evaluate the performance of the algorithm, we consider well known test problems as well as a practical 

facility location problem. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Large part of the research on evolutionary computation has fo- 

cused on solving multi-objective optimization problems with two 

or three objectives ( Deb, 2001 ). However, the recent past has 

shown an increasing need for algorithms that are able to handle a 

larger number of objectives ( Chikumbo et al., 2012; Ishibuchi et al., 

2008 ). Such problems are commonly referred to as many-objective 

optimization problems by the evolutionary optimization commu- 

nity. To match with the demand, several attempts have been made 

to scale the existing evolutionary multi-objective (EMO) algorithms 

to deal with more than three objectives. However, the task has 

turned out to be considerably more challenging than what may 

have been anticipated. A major hurdle for the functioning of Pareto 

dominance based algorithms has been that the proportion of non- 

dominated solutions in a randomly chosen set of objective vectors 

becomes large with an increased number of objectives ( Deb and 

Jain, 2014 ). Consequently, the search ability of EMOs quickly deteri- 

orates to the extent that their usefulness for solving such problems 
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can be questioned ( Deb and Jain, 2014; Deb and Saxena, 1997 ). 

Even visualization of the resulting frontiers and evaluation of per- 

formance metrics, such as hyper-volume, become difficult tasks. 

While considering the many-objective optimization challenge, 

it is worthwhile to note that most of the use-cases are in con- 

text of decision-making problems, where the users are interested 

in evaluating only a very limited part of the search space. Hence 

looking at the problems from the decision maker’s perspective of- 

fers a quite different direction for solving them. Instead of striv- 

ing to find the entire Pareto optimal front at a large computa- 

tional cost, it is possible to leverage the user’s preference infor- 

mation to guide the search into the most relevant areas of the 

search space. Such approaches have been common in the area of 

Multi-Criterion Decision Making ( Steuer, 1986 ) and are referred to 

as interactive approaches. However, these approaches have been 

relatively new in the context of EMOs. Most of the existing evo- 

lutionary methodologies for many objective optimization are not 

designed to be interactive; preference information from the deci- 

sion maker is utilized either before the beginning of the search 

process (a priori approach) or at the end of the search process (a 

posteriori approach) to produce the optimal solutions, but not in 

the middle. Some studies in this direction are biased niching based 

EMO ( Branke and Deb, 2004 ), reference point based EMO approach 
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( Deb et al., 2006 ), the light beam approach and reference direction 

based EMO ( Thiele et al., 2009 ). Once the optimization process is 

started, there is no interaction involved with the decision maker 

until a set of representative Pareto solutions is found. This is a rea- 

sonable strategy, when there are ways to visualize the frontier ge- 

ometrically. But in the case of many objective problems, a more 

convenient strategy may be obtained by allowing interactions to 

collect preference information from the decision maker after ev- 

ery few generations ( Deb et al., 2010; Sinha et al., 2014 ). Some 

approaches interact with the decision maker and iterate the pro- 

cess of elicitation and search until a satisfactory solution is found. 

However, only a limited number of studies have been performed 

where preference information is elicited during the search process 

( Branke and Deb, 2004; Fowler et al., 20 09; Jaszkiewicz, 20 07; Pur- 

shouse et al., 2014 ). 

Our aim in this paper is to introduce an interactive evolution- 

ary algorithm for handling many-objective optimization problems. 

Throughout the construction, we assume that the underlying un- 

known value function, which characterizes the decision-maker’s 

preferences, is quasi-concave and strictly increasing. Under this as- 

sumption, in each interactive step, the decision-maker is presented 

a set of S points which are to be ranked via pairwise comparisons. 

The comparison results are then used to develop convex polyhedral 

cones whose points cannot be better than the vertex of the cone 

( Kallio and Halme, 2013; Korhonen et al., 1984 ). The preference 

cones are utilized in three different ways within the algorithm: (i) 

first, they provide an efficient way to eliminate non-preferred can- 

didates from the set of points to be shown to the user; (ii) second, 

we can extract information on the directions where the user’s un- 

known value function is likely to increase at the fastest rates; (iii) 

finally, we can also construct a cone-based measure (merit func- 

tion) for the quality of the solution candidates. Both merit function 

and the information on the steepest ascent directions have proven 

to be helpful in accelerating the convergence of the algorithm to- 

wards the regions that are most relevant for the decision-maker. 

Convergence can be guaranteed for pure integer problems with fi- 

nite Pareto sets, but for more general problems the algorithm con- 

tinues until a satisficing solution is found or the fixed budget of 

user-interactions is consumed. 

The approach draws heavily on the insights from the literature 

on multi-criteria decision making, where cone contraction meth- 

ods have been previously studied by Kallio and Halme (2013) , 

Korhonen et al. (1984) and Kadzinski and Slowinski (2012) . In 

this paper, we utilize the definitions proposed by Kallio and 

Halme (2013) due to benefit of obtaining a simple and opera- 

tional test for checking if a candidate point should be consid- 

ered non-preferred. However, our approach differs from Kallio and 

Halme (2013) in its diverse use of the preference cones. Instead of 

restricting the use only to the elimination of non-preferred candi- 

dates, we also leverage the cones in approximating the directions 

of steepest ascent to guide the subsequent search done by the evo- 

lutionary algorithm. 

The use of preference cones is a relatively new idea in the 

context of evolutionary algorithms. Though the fields of evolu- 

tionary computation and multi-criteria decision making (MCDM) 

share a common goal, researchers have shown only lukewarm in- 

terest, until recently, in applying the principles of one field to 

the other. Our approach is perhaps closest to the ideas proposed 

in Deb et al. (2010) and Sinha et al. (2014) , where the deci- 

sion maker’s preferences are approximated using polynomial value 

functions or by heuristically constructed polyhedral cones. There- 

fore, we have considered these results as baselines for our experi- 

ments. In Deb et al. (2010) , preference information is used to build 

a strictly monotone polynomial value function, which is then uti- 

lized within a multi-objective algorithm to guide the progress to- 

wards the most preferred solution. To a degree, this resembles our 

approach. However, in the current paper, the value function is re- 

placed by polyhedral cones that are constructed from a small set 

of pairwise comparisons. One of the benefits is that we no longer 

have to assume a fixed parametric form for the value function, 

but we can accommodate any quasi-concave monotone value func- 

tion. The cones are also likely to be more tolerant towards pref- 

erence uncertainty. Though polyhedral cones have been heuristi- 

cally used in Sinha et al. (2014, 2010) to incorporate preference 

information in a multi-objective evolutionary algorithm, the cur- 

rent work builds on a strong mathematical foundation which lacks 

in the earlier study. The strengths of the proposed idea can be ob- 

served in the comparative study performed in the paper, where the 

cone contraction method is found to converge towards the most 

preferred point in very few iterations with the decision maker, 

thereby reducing the cognitive burden. 

The rest of the article is organized as follows. In Section 2 , 

we formulate the many-objective problem and discuss the 

central assumptions limiting the class of applicable problems. 

Section 3 presents several key definitions regarding representation 

of preference information using convex cones. Section 4 outlines 

the evolutionary algorithm and describes how the preference cones 

can be operationalized in practice. In Section 6 , the working of the 

algorithm is demonstrated on three different types of test prob- 

lems. One of the problems is a practical multi-criteria facility lo- 

cation problem, and the other two are well-known test problems 

that have been discussed in Deb et al. (2005) . Finally, we conclude 

in Section 7 . 

2. Many-objective optimization problem 

Consider a many-objective optimization problem with k objec- 

tives to be maximized with respect to continuous and/or integer 

variables. Let f ∈ R k denote the column vector of objectives. The un- 

derlying value function which the decision maker ( DM ) aims to 

maximize is u ( f ). At the outset the value function is not known, 

but we assume that u is quasi-concave and strictly increasing. 

Given a set F of feasible objective vectors of size k, such that 

f = ( f 1 , . . . , f k ) ∈ F , the many-objective problem is 

max 
f∈ F 

u ( f ) . (1) 

We consider the feasible set 

F = { f | f ≤ f U (x ) , h (x ) ≥ 0 , x j integer for j ∈ J} , (2) 

where x ∈ R n is a vector of decision variables, function h ∈ R m is 

concave, f U ∈ R k is an upper bound that is concave in the domain 

{ x | h ( x ) ≥ 0}, and J is a subset of { 1 , . . . , n } with J = { 1 , . . . , n } for 

pure integer problems. For an optimal point f ′ ∈ F , f ′ = f U (x ) . It is 

noteworthy that convexity assumptions are not required for EMO 

approaches; however, it forms the basis for some of the theoreti- 

cal discussions in the paper. The notations used in the paper have 

been summarized in Table 1 . Dot product between two vectors a 

and b has been denoted as ab throughout the paper. 

3. Representation of preference information using convex 

cones 

This section begins with a review of basic properties of quasi- 

concave and increasing value functions. Thereafter, we introduce 

convex cones which are convenient for representing partial prefer- 

ence information accumulating over interactive iterations for opti- 

mization. Such cones identify points which are inferior to points 

already found, provide local information on the gradient of the 

value function, and are used to define a merit function. The merit 

function is one of the important contributions made in this paper, 

which is particularly suitable for assigning fitness in an evolution- 

ary algorithm and contains all the information related to the cones. 
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