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a b s t r a c t 

In so-called random preference models of probabilistic choice, a decision maker chooses according to an 

unspecified probability distribution over preference states. The most prominent case arises when prefer- 

ence states are linear orders or weak orders of the choice alternatives. The literature has documented that 

actually evaluating whether decision makers’ observed choices are consistent with such a probabilistic 

model of choice poses computational difficulties. This severely limits the possible scale of empirical work 

in behavioral economics and related disciplines. We propose a family of column generation based algo- 

rithms for performing such tests. We evaluate our algorithms on various sets of instances. We observe 

substantial improvements in computation time and conclude that we can efficiently test substantially 

larger data sets than previously possible. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

We consider computational challenges that arise when testing 

a certain type of probabilistic models of choice behavior. Imagine 

a decision maker who must specify a best element out of a set 

of distinct alternatives. In such situations, decision makers do 

not consistently select the same alternative as best, even when 

presented with the same (or nearly the same) set of alternatives 

(see, e.g., Tversky, 1969 ). Thus, assuming that a decision maker 

acts deterministically using a single decision rule (say, some linear 

order of the alternatives) is unrealistic. Probabilistic models of 

choice, pioneered by Block and Marschak (1960) and Luce (1959) , 

attempt to explain uncertainty and fluctuations in behavior 

through probabilistic specifications. We concentrate on a class 

of models in which the permissible preference states are linear 

orders or weak orders of the alternatives. These are prominent 

cases in the ongoing research about rationality of preferences 

in behavioral economics, psychology, neuroscience and zoology 

( Arbuthnott et al., 2017; Brown et al., 2015; Regenwetter et al., 

2011; Regenwetter and Davis-Stober, 2012 ). The random preference 

model captures the decision maker’s uncertainty about preference 

with a probability distribution over these preference states. The 
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probability of choosing a particular alternative is governed by that 

probability distribution over preference states. 

In a seminal contribution, McFadden and Richter (1990) pro- 

vided several equivalent (sets of) conditions for choice probabilities 

to be consistent with such a probabilistic model of choice. How- 

ever, actually checking these conditions on choice probabilities 

poses computational challenges. Indeed, straightforwardly eval- 

uating the “axiom of revealed stochastic preference” and the 

“Block-Marschak polynomials” both require checking a number of 

conditions that is exponential in the number of choice alternatives. 

Likewise, the system of linear inequalities and the linear programs 

given in McFadden and Richter (1990) contained one variable for 

every preference state. The resulting number of variables grows 

exponentially in the number of alternatives, for most classes of 

preference states, including for linear orders. Even so, this linear 

programming model forms the basis of our column generation 

approach. 

Most work on these probabilistic models has been on binary 

choice induced by linear orders . More precisely, the probability 

that a person chooses an alternative i over an alternative j , when 

required to choose one of the two, is the marginal probabil- 

ity of all linear orders in which i is preferred to j . Block and 

Marschak (1960) described two classes of inequalities and proved 

that these inequalities are necessary and sufficient conditions for 

consistency with the probabilistic model of choice for data sets 

with up to 3 choice alternatives. Dridi (1980) proved that these 

conditions are also necessary and sufficient for data sets with up 

to 5 alternatives and showed that they are no longer sufficient 
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for data sets with 6 or more alternatives. Megiddo (1977) proved 

that testing data sets for consistency with probabilistic choice 

induced by linear orders is difficult in general. He showed that 

the problem is equivalent to testing membership of a given point 

in the linear ordering polytope . Since optimization and separa- 

tion over a particular polytope are polynomially equivalent (see 

Grötschel et al., 1993 ), it follows that testing whether a given 

collection of choice probabilities is consistent with a probabilistic 

model of choice induced by linear orders is np-complete . In 

the last decade, researchers have generated extensive knowledge 

on the facial description of the linear ordering polytope (see 

Doignon et al. (2006) ; Fiorini (2006) , the survey by Charon and 

Hudry (2007) , and the book by Martí and Reinelt (2011) , as well 

as the references contained therein). 

When carrying out tests of probabilistic models of choice, 

scholars usually circumvent the computational challenges that 

arise when the number of alternatives grows large. Human labora- 

tory experiments keep the number of alternatives small (see, e.g., 

Brown et al., 2015; Cavagnaro and Davis-Stober, 2014; Regenwetter 

et al., 2011; Regenwetter and Davis-Stober, 2012 , who used sets 

of 5 alternatives). Kitamura and Stoye (2014) tested a probabilistic 

version of the “strong axiom of revealed preference,” using data 

from the U.K. Family Expenditure Survey, which they partitioned 

into subsets of a manageable size. One benefit of our proposed 

methodology is that it will allow researchers to design studies 

with larger numbers of choice alternatives, which will, in turn, 

increase their realism and generalizability. While testing proba- 

bilistic choice models is difficult in general, it becomes easy for 

some settings and classes of preference states. Matzkin (2007) and 

Hoderlein and Stoye (2014) provided conditions for a probabilistic 

version of the so-called “weak axiom of revealed preference.”

Davis-Stober (2012) described a set of linear inequalities that 

are necessary and sufficient conditions for probabilistic choice 

induced by certain heuristic preferences. Smeulders (2018) pro- 

vided necessary and sufficient conditions for a probabilistic 

model induced by single-peaked linear orders. Guo and Regen- 

wetter (2014) , Regenwetter et al. (2014) , and Regenwetter and 

Robinson (2017) evaluated various sets of necessary and sufficient 

conditions for binary choice probabilities. For all of these settings, 

the conditions can be tested in polynomial time. 

Here, we propose a family of algorithms based on column 

generation to test various probabilistic models of choice and apply 

it to a model induced by linear orders. Column generation is a 

technique to efficiently solve linear programs with a large number 

of variables; we come back to this technique in Section 3 . Tradi- 

tionally, the technique of column generation has almost always 

been applied to optimization problems. Here, however, we use it 

for a decision problem, namely, to detect whether given choice 

probabilities satisfy the probabilistic model of choice or not (i.e., 

a yes/no answer). We show how this affects the algorithm. The 

rest of this paper unfolds as follows. In Section 2 , we lay out the 

notation, the definitions and the model that we use. Section 3 pro- 

vides a basic description of the column generation algorithms. 

Section 4 discusses the implementation of a family of such algo- 

rithms and reviews results from computational experiments. In 

Section 5 we show that when testing the model for many similar 

choice probabilities, the column generation algorithm can use out- 

put from one test to speed up subsequent tests. We illustrate how 

this is useful for statistical analysis of probabilistic models, e.g., for 

calculating the Bayes factor to evaluate statistical performance on 

laboratory data from human subjects. We conclude in Section 6 . 

2. Notation and definitions 

Consider a set A , consisting of n many alternatives and let A � 

A = { (i, j) | i, j ∈ A, i � = j} denote the collection of all ordered pairs 

of distinct elements of A . For each ordered pair of distinct alterna- 

tives ( i, j ) ∈ A � A , we are given a nonnegative number p i, j ≤ 1. These 

numbers represent the probabilities that i is chosen over j for all 

distinct i and j in A . For now, we concentrate on two-alternative 

forced choice , that is, the case in which a person must choose one 

alternative or the other when offered a pair of alternatives. (We 

consider other cases in the appendix.) Therefore, p i, j + p j,i = 1 for 

each pair of i, j ∈ A, i � = j . We refer to such a collection { p i, j | ( i, j ) ∈ A 

� A } of binary choice probabilities as a data set. We denote a pref- 

erence order over the alternatives by the relation � and we use the 

index m to indicate a particular preference order. If, for the pref- 

erence order �m 

, the alternative i ∈ A is preferred over the alter- 

native j ∈ A , we write i �m 

j . The relations �m 

are asymmetric, com- 

plete and transitive. The set of all such preference orders is O . We 

further consider the subsets O i, j ⊂ O for each ( i, j ) ∈ A � A , where 

each O i, j contains all preference orders �m 

in which i �m 

j . The par- 

ticular probabilistic model of choice that we use is called the mix- 

ture model (also known as random preference model): this model 

assumes that when a decision maker is faced with a choice, each 

preference order has a certain probability of governing the choice. 

When these probabilities are consistent with the numbers p i, j , we 

say that the mixture model rationalizes the data set. 

Definition 1. Choice probabilities { p i, j | ( i, j ) ∈ A � A } are rational- 

izable by the mixture model if and only if there exist values x m 

, 

with 0 ≤ x m 

≤ 1 for each �m 

∈ O , for which ∑ 

�m ∈ O i, j 

x m 

= p i, j , ∀ (i, j) ∈ A � A. (1) 

One straightforward way to find out whether a given data set 

is rationalizable by the mixture model is to check whether there 

exist nonnegative values x m 

that satisfy this system of equalities 

(1) . Similarly, a collection of empirical choice proportions (say, in 

a human subjects data set from a laboratory experiment) is ratio- 

nalizable if it is consistent with having been generated by choice 

probabilities that are rationalizable. Determining whether this is 

the case is a matter of statistical inference subject to the equality 

constraints (1) on the generating probabilities { p i, j | ( i, j ) ∈ A � A }. 

Notice that the system of equalities (1) has a variable for every 

possible preference order of the alternatives, of which there exist 

| O | = n ! many. Even for a moderate number of alternatives, it is 

computationally prohibitive to solve this system. 

Another approach is based on a result by Megiddo (1977) : A 

collection { p i, j | ( i, j ) ∈ A � A } of binary choice probabilities can 

be viewed as a point in a n × (n − 1) -dimensional space. The 

collection is rationalizable if and only if that point is contained in 

the linear ordering polytope . This polytope (see Section 3.2 for its 

formulation) can theoretically be described by its facet-defining 

inequalities, which means that the data set { p i, j | ( i, j ) ∈ A � A } is 

rationalizable by the mixture model if and only if the probabilities 

p i, j satisfy all inequalities defining the linear ordering polytope. 

However, the number of facet-defining inequalities needed to de- 

scribe the linear ordering polytope rises very fast with the number 

of alternatives; a complete description is known for up to 7 alter- 

natives only (see, e.g., Martí and Reinelt, 2011 ). Furthermore, the 

problem of establishing whether any facet-defining inequalities are 

violated is np-complete for several known classes of inequalities. 

Here, we circumvent the need to solve a huge system of equalities 

(1) , or to list and check all facet-defining inequalities, by moving 

to a different perspective: column generation . 

3. Column generation 

In this section, we describe an algorithm based on column 

generation to detect whether a given data set can be rationalized 

by the mixture model. Column generation is a technique dating 
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