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a b s t r a c t 

This paper presents a family of methods for locating/fitting hyperplanes with respect to a given set of 

points. We introduce a general framework for a family of aggregation criteria, based on ordered weighted 

operators, of different distance-based errors. The most popular methods found in the specialized liter- 

ature, namely least sum of squares, least absolute deviation, least quantile of squares or least trimmed 

sum of squares among many others, can be cast within this family as particular choices of the errors and 

the aggregation criteria. Unified mathematical programming formulations for these methods are provided 

and some interesting cases are analyzed. The most general setting give rise to mixed integer nonlinear 

programming problems. For those situations we present inner and outer linear approximations to as- 

sess tractable solution procedures. It is also proposed a new goodness of fitting index which extends the 

classical coefficient of determination and allows one to compare different fitting hyperplanes. A series of 

illustrative examples and extensive computational experiments implemented in R are provided to show 

the applicability of the proposed methods. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The problem of locating hyperplanes with respect to a given set 

of point is well-known in Location Analysis (LA) Schöbel (1999) . 

This problem is closely related to another common question in 

Data Analysis (DA): to study the behavior of a given set of data 

with respect to a fitting body expressed with an equation of the 

form f (x ) = 0 , with x = (X 1 , . . . , X d ) ∈ R 

d . This last problem re- 

duces to the estimation of the ‘best’ function f that expresses the 

relationship between the data or, in the jargon of LA, to the loca- 

tion of the surface f (x ) = 0 that minimizes some aggregation func- 

tion of the distances to these points (see Amaldi et al., 2016; Diaz- 

Báñez et al., 2004; Drezner et al., 2002 ). In many cases the family 

of functions where f belongs to is fixed and then, the parameters 

defining such an optimal function must be determined. The fam- 

ily of linear functions is the most widely used. This implies that 

the above equation is of the form f (x ) = β0 + 

∑ d 
k =1 βk X k = 0 for 

β0 , β1 , . . . , βd ∈ R . 

To perform such a fitting, we are given a set of points 

{ x 1 , . . . , x n } ⊂ R 

d , and the goal is to find the vector ˆ β = 
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( ̂  β0 , 
ˆ β1 , . . . , 

ˆ βd ) that minimizes some measure of the deviation of 

the data with respect to the hyperplane it induces, H( ̂  β) = { z ∈ 

R 

d : ˆ β0 + 

∑ d 
k =1 

ˆ βk z k = 0 } . For a given point x ∈ R 

d , we define the 

residual with respect to a generic x as a mapping ε x : R 

d+1 → R + , 
that maps any set of coefficients β = (β0 , . . . , βd ) ∈ R 

d+1 , into a 

measure εx ( β) that represents the deviation of the given point x 

from the hyperplane with those parameters. The problem of lo- 

cating a hyperplane for a given set of points { x 1 , . . . , x n } ⊆ R 

d con- 

sists of finding the coefficients minimizing an aggregation function, 

� : R 

n → R , of the residuals of all the points. Different choices for 

the residuals and the aggregation criteria will give, in general, dif- 

ferent optimal values for the parameters and thus different prop- 

erties for the resulting hyperplanes. This problem is not new and 

some of these criteria, as the minisum, minimax and some other 

alternatives, have been widely analyzed from a LA perspective (see 

Carrizosa and Plastria, 1995; Megiddo and Tamir, 1983; Schöbel, 

1996; Schöbel, 1997; Schöbel, 1998; Schöbel, 1999 , among other). 

A first approach to locate a hyperplane is to consider that resid- 

uals, with respect to given points, are individual measures of error 

and thus, each residual should be minimized independently of the 

remaining ( Carrizosa et al., 1995; Narula and Wellington, 2007 ). It 

is clear that this simultaneous minimization will not be possible 

in most of the cases and then several strategies can be followed: 

one can try to find the set of Pareto fitting curves ( Carrizosa et al., 
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1995 ) or alternatively, to apply an aggregation function that incor- 

porates the holistic preference of the Decision-Maker on the dif- 

ferent residuals ( Yager and Beliakov, 2010 ). This last choice is very 

difficult and it is usual to apply an approach of complete uncer- 

tainty (i.e., it is assumed that it is known the set of possible out- 

comes, but there is no information about the probabilities of those 

outcomes or about their likelihood ranking) leading to additive ag- 

gregations. 

The most popular methods to compute the coefficients of an 

optimal hyperplane consider that the residuals are the differences 

from one of the coordinates of the space (which are usually known 

as vertical/horizontal distances). In this paper we present a frame- 

work that generalizes previous contributions for optimally locat- 

ing/fitting hyperplanes to a set of points. It introduces a family of 

combinations residuals-criteria that allows for a great flexibility to 

accommodate hyperplanes to a set of points ( Marín et al., 2009; 

Nickel and Puerto, 2005 ). One of the contributions of our proposal 

is the use of modern mathematical programming tools to solve the 

problems which are involved in the computation of the parameters 

of the fitting models. In addition, it can be combined with some 

of the mathematical programming techniques for feature selec- 

tion ( Bertsimas and Mazumder, 2014 ), with classification schemes 

( Bertsimas and Shioda, 2007 ), or with constraints on the coeffi- 

cients of the linear manifold. This unified framework is also able to 

accommodate general forms of regularization, as upper bound on 

the � 2 -norm of the coefficients ( Hoerl and Kennard, 1988 ), since it 

would only mean to add additional constraints to the mathemati- 

cal programming formulations proposed in the paper, at the price 

of increasing the computational complexity needed for solving the 

problems. Many of the formulations described in this paper have 

been implemented in R in order to be available for data analysts. 

In our framework, errors are measured as shortest distances, 

based on a norm, between the given points and the fitting surface. 

This makes the location problem geometrically invariant which is 

an interesting advance with respect to vertical/horizontal residuals. 

We observe that this framework subsumes as particular cases the 

standard location methods that consider residuals based on verti- 

cal distances (commonly used in Statistics); as well as most of the 

particular cases of fitting linear bodies using vertical distances but 

different aggregation criteria described in the literature, as � p fit- 

ting ( � p -norm criterion), least quantile of squares ( Bertsimas and 

Mazumder, 2014; Rousseeuw, 1984 ), least trimmed sum of squares 

( Atkinson and Cheng, 1999; Rousseeuw, 1983 ), etc. The use of non- 

standard residuals is common in the area of LA and other ar- 

eas of Operations Research. However, it is not that usual in the 

field of regression analysis although orthogonal ( � 2 ) residuals have 

been already used, see, e.g., Euclidean Fitting ( Bargiela and Hart- 

ley, 1993; Cavalier and Melloy, 1991; Pinson et al., 2008 ) or Total 

Least Squares ( Van Huffel and Vanderwalle, 1991 ), mainly applied 

to bidimensional data; and the more general geodesic distance 

residuals are applied in geodesic regression ( Fletcher, 2013 ). Quot- 

ing the reasons for that fact given by Giloni and Padberg (2002) : 

“we have left out a summary of linear regression models using the 

more general � τ -norms with τ �∈ { 1 , 2 , ∞} for which the computa- 

tional requirements are considerably more burdensome than in the 

linear programming case (as they generally require methods from 

convex programming where machine computations are far more 

limited today).”

In order to compare the goodness of the fitting for the different 

models, we have developed a new generalized measure of fit. This 

proposal is based on a generalization of the classical coefficient of 

determination for least squares fitting, that will allow one to mea- 

sure how good is an optimal hyperplane with respect to the best 

constant model, X d = β0 . 

The paper is organized as follows. In Section 2 we introduce 

the new framework for fitting hyperplanes as well as some re- 

sults that allow us to interpret the obtained solutions for prac- 

tical purposes. Next, in Section 3 , a residual-aggregation depen- 

dent goodness of fitting index is defined and an efficient approach 

for its computation is presented. Two types of residuals are an- 

alyzed in more detail, namely those induced by polyhedral-and- 

� τ norms for rational τ ≥ 1. In Section 4 , we present new meth- 

ods for the location of hyperplanes assuming that the residuals 

are measured as the shortest norm-based distance between the 

given points (data set) and the linear fitting body using polyhedral 

norms. The results of this section are instrumental. They consti- 

tute the basis to address the more general problems in Section 5 , 

since they will permit to develop inner and outer linear approxi- 

mations for more general Mixed Integer Non Linear Programming 

(MINLP) problems that result in the general case. Section 5 ana- 

lyzes the location of hyperplanes using � τ norms. Since in this case 

non convex problems are derived, we also present outer and inner 

linear approximations that reduce, the corresponding MINLP prob- 

lems with � τ -norms residuals, to problems with polyhedral norm 

residuals. Section 6 is devoted to the computational experiments. 

We report results for synthetic data and for the classical data set 

given in Durbin and Watson (1951) . In addition, we include an il- 

lustrative example of the scalability of the methodology with sev- 

eral thousands of points. The paper finishes with some concluding 

remarks and future research. 

2. A flexible methodology for the location of hyperplanes 

Given is a set of n observations or demand points (depending 

that we use the jargon of data analysis or location analysis, re- 

spectively) in a (d + 1) -dimensional space, { x 1 , . . . , x n } ⊂ { 1 } × R 

d 

(we will assume, for a clearer description of the models, that the 

first, the 0 th , component of x i is the one that account for the in- 

tercept, being x 10 = · · · = x n 0 = 1 ). Next, we analyze the problem of 

locating a linear form (hyperplane) to fit these points minimizing 

different forms of measuring the residuals and their aggregation. 

For any y ∈ R 

d+1 , we shall denote y −0 = (y 1 , . . . , y d ) , i.e., the vec- 

tor with the last d coordinates of y excluding the first one. First, 

we assume that the point-to-hyperplane deviation is modeled by 

a residual mapping ε x : R 

d+1 → R + , ε x (β) = D(x −0 , H(β)) , being 

D a distance measure in R 

d . This residual represents how “far”

is the point (observation) x ∈ R 

d+1 with respect to the hyperplane 

H(β) = { y ∈ R 

d : (1 , y t ) β = 0 } . At times, for the sake of brevity, we 

will write the hyperplane as βt X = 0 , with β = (β0 , β1 , . . . , βd ) 
t ∈ 

R 

d+1 . In addition, to simplify the presentation, we will refer, when- 

ever no possible confusion occurs, to the residual with respect to 

the point x i as εi . 

An overall measure of the deviations of the whole data set with 

respect to the hyperplane induced by β is obtained by using an ag- 

gregation function of the residuals, � : R 

n → R . With this setting, 

one tries to minimize such an aggregation function and the Fitting 

Hyperplane Problem (FHP) consists of finding ˆ β ∈ R 

d+1 such that: 

ˆ β ∈ arg min 

β∈ R d+1 
�(ε (β)) , (1) 

where ε (β) = (ε 1 (β) , . . . , ε n (β)) t is the vector of residuals. 

Note that the difficulty of solving Problem (1) depends on both 

the expressions for the residuals and the aggregation criterion �. If 

� and εx are linear, the above problem becomes a linear program- 

ming problem. In this paper, we consider a general family of aggre- 

gation criteria that includes as particular cases most of the classical 

ones used in the literature ( Bertsimas and Mazumder, 2014; Giloni 

and Padberg, 2002; Rousseeuw and Leroy, 2003; Yager and Beli- 

akov, 2010 ). 

Let λ1 , . . . , λn ∈ R and let ε ∈ R 

n be the vector of residuals of all 

of the points in the given data set. We consider aggregation criteria 
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