
Computers and Operations Research 94 (2018) 1–10

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

An Efficient Implementation of a Static Move Descriptor-based Local

Search Heuristic

Onne Beek

a , Birger Raa

a , ∗, Wout Dullaert b , Daniele Vigo

c , b

a Department of Industrial Systems Engineering and Product Design, Ghent University, Belgium

b Department of Information, Logistics and Innovation, Vrije Universiteit Amsterdam, Belgium

c Department of Electrical, Electronic, and Information Engineering, University of Bologna,Belgium

a r t i c l e i n f o

Article history:

Received 15 September 2017

Revised 11 December 2017

Accepted 6 January 2018

Keywords:

Efficient Local Search

Vehicle Routing

Static Move Descriptors

Heuristic Priority Queue

a b s t r a c t

This paper proposes several strategies for a more efficient implementation of the concept of Static Move

Descriptors (SMDs), a recently developed technique that significantly speeds up Local Search-based al-

gorithms. SMDs exploit the fact that each local search step affects only a small part of the solution

and allow for efficient tracking of changes at each iteration, such that unnecessary reevaluations can

be avoided. The concept is highly effective at reducing computation times and is sufficiently generic to

be applied in any Local Search-based algorithm. Despite its significant advantages, the design proposed in

the literature suffers from high overhead and high implementational complexity. Our proposals lead to a

much leaner and simpler implementation that offers better extendibility and significant further speedups

of local search algorithms. We compare implementations for the Capacitated Vehicle Routing Problem

(CVRP) - a well-studied, complex problem that serves as a benchmark for a wide variety of optimization

techniques.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Local Search is one of the main optimization techniques used to

tackle NP-hard problems. Its popularity comes from its simplicity:

by iteratively applying small changes to a solution, it thoroughly

explores the solution space surrounding the current (or ‘incum-

bent’) solution and gradually improves towards a local optimum.

The nature of these small changes makes Local Search a very flexi-

ble technique. Local Search operators can vary from very basic op-

erators that affect only a few solution characteristics to complex

subroutines that combine multiple changes to perform a significant

restructuring of the solution. These operators embody a trade-off:

complex operators can perform a more extensive search of the so-

lution space and thus can reach higher quality solutions, but the

number of possible changes and thus the effort required to find

improving changes increases with their complexity. As a result,

most Local Search procedures usually only adopt operators that af-

fect a very small number of characteristics.

Local Search operators are also used as building blocks in

metaheuristic solution approaches. Pure Local Search metaheuris-

tics generally make use of a larger set of simple operators, com-

∗ Corresponding author at: Technologiepark 903, 9052 Zwijnaarde, Ghent, Bel-

gium.

E-mail address: Birger.Raa@UGent.be (B. Raa).

bined with a guiding strategy to steer the search out of local op-

tima. The potential of these pure Local Search metaheuristics has

been demonstrated by multiple powerful algorithms, such as Tabu

Search (Glover, 1989), which allows worsening moves and pre-

vents cycling by blocking moves with specific (‘tabu’) character-

istics; Guided Local Search (Voudouris and Tsang, 1999), which

guides the search away from local optima by penalizing undesir-

able, or overly frequent, characteristics; and Variable Neighborhood

Search (Mladenovi ́c and Hansen, 1997), which escapes from local

optima of one operator by invoking another. All these metaheuris-

tics are capable of diversifying the search using only Local Search

operators.

In contrast to pure Local Search-based metaheuristics, there

is also widespread use of Local Search in so-called hybrid meta-

heuristics. These algorithms use the power of Local Search as a tool

for intensification - a strong, localized search to improve a solution

without drastically altering its structure. This Local Search phase is

then alternated with a diversification method. Popular examples of

such hybrid metaheuristics are Memetic Algorithms (Norman and

Moscato, 1989), where the Local Search is wrapped into an evo-

lutionary, population-based optimization framework, and Iterated

Local Search (Martin et al., 1992), which applies a strongly disrup-

tive shake method to a solution stuck in a local optimum, and then

restarts the Local Search on this diversified solution.

https://doi.org/10.1016/j.cor.2018.01.006

0305-0548/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cor.2018.01.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2018.01.006&domain=pdf
mailto:Birger.Raa@UGent.be
https://doi.org/10.1016/j.cor.2018.01.006

2 O. Beek et al. / Computers and Operations Research 94 (2018) 1–10

The underlying principle of these hybrid algorithms is clear:

use Local Search to improve the incumbent solution, then apply

a different method to the solution to escape from the local opti-

mum. Although many authors focus on novel ideas for the diver-

sification, it is still the Local Search phase that transforms candi-

date solutions into high-quality solutions. E.g., Nagata and Bräysy

(2008) note that their powerful memetic algorithm spends 80-

90% of its time on the Local Search phase. Johnson and McGeoch

(1997) note that in case of the hybrid GA, spending more time on

the Local Search phase is more valuable than increasing the popu-

lation size, as shown by the ‘population of one’ genetic algorithm

that lead to Iterated Local Search.

Finding efficient ways of performing Local Search thus has a

critical effect on the performance of any heuristic or metaheuris-

tic algorithm. In this paper, we therefore focus on this important

and often overlooked aspect. We do this by applying Local Search

to the well-known Capacitated Vehicle Routing Problem, a funda-

mental model for transportation problems with multiple vehicles.

Given a set of locations each requiring the delivery of a given vol-

ume, the goal is to design a set of routes so that each location

is visited exactly once in the minimal total distance or time trav-

elled. Every route is limited to a maximum capacity (storage space,

service time, etc.). The VRP is conceptually simple, but computa-

tionally challenging. Its practical relevance and computational chal-

lenges make the VRP an excellent problem for benchmarking ex-

periments.

Local Search is a popular choice of optimization technique for

many variants of the VRP. The problem structure of the VRP can be

exploited in relatively simple Local Search operators that yet prove

to be very powerful. E.g., moving a customer to a different posi-

tion in the visiting sequence, or swapping two customers in the

sequence, are simple operators that are easy to evaluate both in

terms of how they change the solution quality and in terms of so-

lution feasibility. Additionally, the scope of such Local Search oper-

ators can easily be limited (e.g., to nearby customers only) in order

to speed up the search (see Section 2.2).

In the following section, we will explain the strengths and

challenges of efficient Local Search strategies applied to the VRP.

In Section 3 we discuss the concept of Static Move Descriptors,

a technique recently introduced by Zachariadis and Kiranoudis

(2010) to speed up Local Search. We analyze the performance and

identify the drawbacks of their implementation in Section 4 . In

Section 5 , we outline the changes we made in order to create a

leaner, simpler implementation that outperforms the original. In

Section 6 we empirically show the benefits of our version over the

original by performing extensive experiments on VRP benchmark

instances, followed by concluding remarks in Section 7 .

2. Efficient Local Search

The application of Local Search is straightforward for most

problems. As soon as a suitable solution representation is deter-

mined, operators such as moving or swapping elements in the so-

lution can quickly be implemented. A common, yet naive imple-

mentation of Local Search simply loops over all possible moves for

a set of operators in order, identifies the best feasible move and

applies the corresponding change to the solution; this cycle repeats

until no more improving moves can be found.

As an example, consider the Swap operator for the CVRP that

swaps the position of two locations in the sequence. This oper-

ator has a cardinality of O (n 2) since any combination of two lo-

cations unambiguously defines a specific move. Enumerating all

Swap moves is as simple as having two nested loops go over all

locations. Similarly, the Relocate operator moves a location to a

different position in the sequence. This operator also has a cardi-

nality of O (n 2) since any location could be moved to any position

in the sequence. A naive Local Search implementation would eval-

uate the effect on the solution and feasibility of all Swap and Re-

locate moves (possibly along with other Local Search moves that

have been identified).

The goal of Efficient Local Search, and also the main contribu-

tion this paper wants to make, is to come up with a less naive,

more powerful implementation of Local Search that reduces the

computational effort required to achieve high-quality solutions. In

previous research, various techniques to accomplish this goal have

already been suggested, each with their own advantages and dis-

advantages. These techniques can be categorized into three groups:

Acceptance and Search strategies, Candidate Set strategies and Lo-

cality Tracking strategies.

2.1. Acceptance and Search strategies

As explained above, a naive implementation evaluates all pos-

sible moves at each iteration, after which the best feasible move

is selected and applied to the solution. This known as the ‘best-

accept’ strategy. An alternative, known as the ‘first-accept’ strategy,

is to immediately apply an improving feasible move as soon as it is

encountered without first evaluating all other possible moves. This

can drastically reduce the search time per iteration. However, the

downside is that smaller improvements are applied and thus more

iterations are usually required to reach a similar solution quality.

Therefore, an actual speedup using the first-accept strategy can

only be achieved if the order in which moves are evaluated some-

how corresponds to the moves’ improvement potential, i.e., if the

best improving moves are encountered first. This can be achieved

with a clever Search strategy. A good example of this is the Se-

quential Search of Irnich et al. (2006) , in which edges are sorted

by their cost in a pre-processing step. This allows the Local Search

to look at moves involving nearby nodes first and effectively dis-

cards (partial) non-improving moves (involving nodes that are far

apart). The one-time pre-processing step requires O (n 2 log n) time,

but leads to significant speedups: commonly used O (n 2) operators

reach speedups of a factor 100, whereas the O (n 3) operator 3-Opt

obtains a speedup factor up to 14,0 0 0 under ideal circumstances.

Another common search strategy is to only consider one op-

erator at a time and apply best-accept per operator, which be-

came known as the Variable Neighborhood Descent (VND) strategy

(Mladenovi ́c and Hansen, 1997). Only a single operator is evalu-

ated until no more improving moves are found. Then, the search

switches to a different operator. The underlying insight is that a

local optimum for one operator is not necessarily locally optimal

for another operator. This strategy works particularly well when

operators of different cardinality are used: first, the simple oper-

ators are exhausted and only then the higher-order operators are

used.

2.2. Candidate Set strategies

The search strategy determines the order in which moves are

evaluated, and whether a single or multiple operators are consid-

ered at once. However, even with first-accept, the entire search

space has to be evaluated eventually. This can be very expensive,

especially for large scale instances. Candidate Set strategies there-

fore limit the search to a subset of moves that seem more promis-

ing, or conversely, skip the evaluation of moves that are deemed

less likely to result in improvements.

For the Traveling Salesman Problem, Lin and Kernighan

(1973) introduced the K-nearest neighbors strategy, in which the

search only considers the K nearest neighbors of a vertex, i.e.,

the K cheapest incident edges (with K < n). Johnson and McGeoch

(1997) extended this strategy by selecting the K-nearest neigh-

bors of each quadrant around a vertex, ensuring the existence of

Download English Version:

https://daneshyari.com/en/article/6892638

Download Persian Version:

https://daneshyari.com/article/6892638

Daneshyari.com

https://daneshyari.com/en/article/6892638
https://daneshyari.com/article/6892638
https://daneshyari.com

