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a b s t r a c t 

This paper deals with the Minimum Latency Problem (MLP), a variant of the well-known Traveling Sales- 

man Problem in which the objective is to minimize the sum of waiting times of customers. This problem 

arises in many applications where customer satisfaction is more important than the total time spent by 

the server. This paper presents a novel branch-and-price algorithm for MLP that strongly relies on new 

features for the ng -path relaxation, namely: (1) a new labeling algorithm with an enhanced dominance 

rule named multiple partial label dominance; (2) a generalized definition of ng -sets in terms of arcs, 

instead of nodes; and (3) a strategy for decreasing ng -set sizes when those sets are being dynamically 

chosen. Also, other elements of efficient exact algorithms for vehicle routing problems are incorporated 

into our method, such as reduced cost fixing, dual stabilization, route enumeration and strong branching. 

Computational experiments over TSPLIB instances are reported, showing that several instances not solved 

by the current state-of-the-art method can now be solved. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

This paper deals with the Minimum Latency Problem (MLP). In 

MLP, we are given a complete directed graph G = (V, A ) and a time 

t ij for each arc ( i, j ) ∈ A . Set V is composed of n + 1 nodes: node 0, 

representing a depot, and nodes 1 , . . . , n, representing n customers. 

The task is to find a Hamiltonian circuit (i 0 = 0 , i 1 , . . . , i n , i n +1 = 0) , 

a.k.a. tour, in G that minimizes 
∑ n +1 

p=1 l(i p ) , where the latency l ( i p ) 

is defined as the accumulated travel time from the depot to i p . The 

MLP is related to the Time Dependent Traveling Salesman Problem 

(TDTSP), a generalization of the Traveling Salesman Problem (TSP) 

in which the cost for traversing an arc depends on its position in 

the tour. More precisely, MLP can be viewed as the particular case 

of the TDTSP where the cost of an arc ( i, j ) in position p , 0 ≤ p ≤ n , 

is given by (n − p + 1) t i j . 

The MLP is also known in the literature as Delivery Man 

Problem ( Roberti and Mingozzi, 2014 ), Traveling Repairman Prob- 

lem ( Afrati, Foto et al., 1986 ), Traveling Deliveryman Problem 

( Tsitsiklis, 1992 ) and Traveling Salesman Problem with Cumulative 

Costs ( Bianco et al., 1993 ). Although MLP seems to be a simple 

variant of TSP, some important characteristics are very different 

in those problems. First, two different viewpoints of a distribu- 
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tion system are considered: TSP is server oriented, since one wants 

to minimize the total travel time; on the other hand, MLP is cus- 

tomer oriented because the objective is equivalent to minimizing 

the average waiting time of customers ( Archer and Williamson, 

2003; Silva et al., 2012; Sitters, 2002 ). Customer satisfaction is 

the main objective in many applications, such as home deliv- 

ery services ( Méndez-Díaz et al., 2008 ), and has attracted the 

attention of researchers, as reflected by the considerable num- 

ber of MLP variants studied in the very last years (see, for in- 

stance, Lysgaard and Wøhlk (2014) , Rivera et al. (2016) , Nucamendi- 

Guillén et al. (2016) and Sze et al. (2017) ). Second, in contrast to 

what happens in TSP, simple local changes may affect globally a 

MLP solution because the latency of subsequent customers may 

change ( Silva et al., 2012; Sitters, 2002 ). This can make it more 

difficult to solve MLP both exactly and heuristically. For exam- 

ple, current state-of-the-art exact methods for MLP are not capa- 

ble of solving consistently instances with 150 customers, whereas 

TSP instances with thousands of customers are solved routinely 

( Abeledo et al., 2013 ). 

Many complexity results for MLP have been obtained. The 

problem is NP-Hard for general metric spaces ( Sahni and Gonza- 

lez, 1976 ), and remains NP-Hard even if the times correspond to 

Euclidean distances ( Afrati, Foto et al., 1986 ) or if they are ob- 

tained from an underlying graph that is a tree Sitters (2002) . On 

the other hand, the problem is polynomial if the underlying graph 

is a path ( Afrati, Foto et al., 1986; Garca et al., 2002 ), a tree with 

equal weights or a tree with diameter at most 3 ( Blum et al., 1994 ). 
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The MLP with deadlines, i.e., with upper bounds on l ( i p ), is NP- 

Hard even for paths ( Afrati, Foto et al., 1986 ). In terms of approxi- 

mation, hardness results show that one should not expect to attain 

arbitrarily good approximation factors for MLP ( Blum et al., 1994 ). 

However, 3.59 and 3.03 approximations are known for general 

metric spaces and general trees, respectively ( Archer and Blasiak, 

2010; Chaudhuri et al., 2003 ). Moreover, a constant factor approx- 

imation is not likely to exist if times do not satisfy the triangle 

inequality, just as for TSP ( Blum et al., 1994 ). 

The first integer programming formulations were given in 

Picard and Queyranne (1978) , where the authors stated TDTSP as 

a machine scheduling problem and solved instances with up to 

20 jobs by means of a branch-and-bound method over lagrangian 

bounds. A new formulation with n constraints was presented in 

Fox et al. (1980) , but the authors did not report any computational 

results. Lucena (1990) and Bianco et al. (1993) followed the same 

approach as Picard and Queyranne (1978) and employed langra- 

gian bounds in experiments over MLP instances with up to 30 and 

60 vertices, respectively. The latter authors also developed a dy- 

namic programming method capable of attesting that the bounds 

obtained for 60-vertex instances were within 3% from optimality. 

Then, a series of enumerative strategies based on new formulations 

was introduced in Fischetti et al. (1993) , Van Eijl (1995) , Méndez- 

Díaz et al. (2008) , Bigras et al. (2008) , Godinho et al. (2014) , as well 

as cutting planes ( Bigras et al., 2008; Méndez-Díaz et al., 2008; 

Van Eijl, 1995 ) and polyhedral studies ( Méndez-Díaz et al., 2008 ). 

Instances with 60 vertices could already be solved by the algorithm 

of Fischetti et al. (1993) . More recently, Abeledo et al. (2013) man- 

aged to solve almost all TSPLIB instances with up to 107 ver- 

tices using a branch-cut-and-price algorithm. The authors departed 

from a formulation by Picard and Queyranne (1978) and proposed 

new inequalities, that are proved to be facet-inducing. Roberti and 

Mingozzi (2014) implemented dual ascent and column genera- 

tion techniques to compute a sequence of lower bounds asso- 

ciated with set partitioning formulations where a column rep- 

resents an ng -path, which is a path relaxation introduced by 

Baldacci et al. (2011) . An ng -path may contain cycles, but just 

those allowed by the so-called ng -sets. These sets are iteratively 

augmented so that less cycles are allowed and improved bounds 

are obtained. The final lower bound is used in a dynamic pro- 

gramming recursion to compute the optimal solution. This method 

could solve some larger TSPLIB instances, with up to 150 vertices, 

and currently holds the status of state-of-the-art exact method 

for MLP. Finally, heuristic algorithms for MLP can be found in 

Ngueveu et al. (2010) , Salehipour et al. (2011) , Silva et al. (2012) and 

Mladenovi ́c et al. (2013) . 

This paper presents a novel branch-and-price algorithm for 

MLP that strongly relies on ng -paths. Following the directions of 

Roberti and Mingozzi (2014) , our method works over a set par- 

titioning formulation where columns represent ng -paths and the 

column generation bounds computed on each node of the tree are 

derived from dynamically defined ng -sets. However, we introduce 

the following improvements on the use of ng -paths. 

• Multiple Partial Label Dominance: In the labeling algorithms 

used for pricing ng -paths, a partial path P is represented as a la- 

bel L ( P ). A key concept in this kind of algorithm is dominance. 

A label L ( P 1 ) dominates a label L ( P 2 ) if every completion P ′ of 

P 2 is also a feasible completion of P 1 , and the cost of P 1 + P ′ 
is not larger than the cost of P 2 + P ′ . In this case, L ( P 2 ) can be 

safely eliminated. In this paper, we propose a stronger domi- 

nance rule by which some extensions for L ( P 2 ) can be avoided, 

even though this label cannot be completely disregarded ac- 

cording to the classical dominance rule. We briefly discuss two 

alternative implementations of this new dominance rule, where 

the best one typically speeds up the labeling algorithm by fac- 

tors between 4 and 8. 
• Arc-Based ng -Path Relaxation: ng -sets as originally defined by 

Baldacci et al. (2011) are a vertex-based memory mechanism. In 

this paper, we provide a generalized definition of them in terms 

of arcs. We show that this new definition is particularly useful 

in the context of dynamically defined ng -sets, allowing strong 

bounds to be obtained in more controlled pricing times. 
• Fully Dynamic ng -Path Relaxation: We improve the dynamic 

ng -path relaxation of Roberti and Mingozzi (2014) by introduc- 

ing a procedure for decreasing the ng -sets, without changing 

the current bounds. Such reductions are beneficial for the pric- 

ing time and also help to refine the choice of ng -sets. 

Also, other well-known elements of efficient exact algorithms 

for many other variants of the vehicle routing problem (VRP) are 

incorporated into our method, namely reduced cost fixing, dual 

stabilization, route enumeration and strong branching. Computa- 

tional experiments over MLP instances derived from TSPLIB were 

conducted to attest the effectiveness of the new branch-and-price 

algorithm. The results show that better bounds can be obtained 

in less computational time when compared to the state-of-the-art 

algorithm, especially because of the new features for the ng -path 

relaxation. In particular, the branch-and-price solved all the 9 in- 

stances with up to 150 vertices not solved in Roberti and Min- 

gozzi (2014) . It could also solve 4 additional instances, with more 

than 150 vertices, never considered before by exact methods. 

The remainder of this paper is organized as follows. 

Section 2 discusses the ng -path relaxation and labeling algo- 

rithms. Section 3 introduces the new features for the ng -path 

relaxation. The proposed branch-and-price algorithm is described 

in Section 4 , where we also give implementation details. Computa- 

tional experiments are presented in Section 5 . Finally, concluding 

remarks are drawn in the last section. 

2. Route relaxations and labeling algorithms 

This section reviews the route relaxations and labeling algo- 

rithms that are related to current state-of-the-art exact algorithms 

for VRPs, such as Capacitated VRP (CVRP), VRP with time win- 

dows (VRPTW), and the MLP itself. Such algorithms are based on a 

combination of column and cut generation over the following set- 

partitioning formulation. 

min 

∑ 

R ∈ �
c R λR (1) 

s.t. 
∑ 

R ∈ �
a i R λR = 1 , ∀ i ∈ C, (2) 

λR ∈ { 0 , 1 } , ∀ R ∈ �, (3) 

where C, �, c R and a i 
R 

denote, respectively, the set of customers, 

the set of feasible routes, the cost of route R , and the number of 

times route R visits customer i . 

As the number of variables in Formulation (1) –(3) is exponen- 

tial in |C| , column generation is typically applied to solve its lin- 

ear relaxation. The pricing subproblem depends on the consid- 

ered variant, but it can often be modeled as the Elementary Re- 

source Constrained Shortest Path Problem (ERCSPP). In ERCSPP, we 

are given a directed graph G 

′ = (V ′ , A 

′ ) with vertex set V 

′ and arc 

set A 

′ ; source and sink nodes s ∈ V 

′ and t ∈ V 

′ , respectively; and a 

set of resources W . Moreover, for each i ∈ V 

′ and r ∈ W, let l r 
i 

∈ R 

and u r 
i 
∈ R be, respectively, the minimum and the maximum con- 

sumption of resource r in any partial path from s to i . Each par- 

tial path P = (i 0 = s, i 1 , . . . , i p ) has an associated vector of resource 
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