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a b s t r a c t 

We propose an efficient quasi-physical quasi-human (QPQH) algorithm for the equal circle packing prob- 

lem. QPQH is based on our modified Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, which we call 

the local BFGS, and a new basin-hopping strategy based on a Chinese proverb: alternate tension with 

relaxation. Starting from a random initial layout, we apply the local BFGS algorithm to reach a local 

minimum layout. The local BFGS algorithm fully utilizes the neighborhood information of each circle to 

considerably speed up the computation of the gradient descent process; this efficiency is very apparent 

for large-scale instances. When yielding a local minimum layout, the new basin-hopping strategy is used 

to shrink container sizes to different extents, to generate several new layouts. Experimental results indi- 

cate that the new basin-hopping strategy is very efficient, especially for layout types with comparatively 

dense packing in the center and comparatively sparse packing around the boundary of the container. 

We tested QPQH on instances in which n = 1 , 2 , · · · , 320 , and obtained 66 new layouts having smaller 

container sizes than the current best-known results reported in the literature. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The circle packing problem (CPP), which is concerned with ar- 

ranging n circles in a container with no overlap, is of great interest 

in industry and academia. CPP is encountered in a variety of fields, 

including apparel, naval, automotive, aerospace, and facility layout 

planning ( Castillo et al., 2008 ). CPP has been proven to be NP-hard 

( Demaine et al., 2010 ); as such, it is difficult to find an exact so- 

lution in polynomial time, even for some specific instances. Re- 

searchers resort to heuristic methods that fall into two categories: 

construction methods and optimization methods. 

The construction method can be described as packing circles 

one by one using some specific rules. There is one rule type that 

fixes the container radius and is only concerned with where to 

feasibly place the circles in the container. Algorithms include the 

Max Hole Degree (MHD) algorithm ( Huang et al., 2003 ), the self 

look-ahead search strategy ( Huang et al., 20 05; 20 06 ), the Pruned–

Enriched–Rosenbluth Method (PERM) ( Lü and Huang, 2008 ), and 

the beam search algorithm ( Akeb et al., 2009 ). The other rule type 

adjusts the container radius along with the construction procedure. 
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Algorithms include the best local position (BLP) series ( Akeb and 

Hifi, 2010; Hifi and M’Hallah, 2004; Hifi and MHallah, 20 06; 20 07 ), 

and the hybrid beam search looking-ahead algorithm ( Akeb and 

Hifi, 2010 ). 

In contrast to the construction method, the optimization 

method does not directly obtain a good solution, but itera- 

tively improves the solution based on an ordinary initial solu- 

tion. The majority of optimization methods can be further clas- 

sified into quasi-physical, quasi-human algorithms ( Liu et al., 

2016; Wang et al., 2002 ), Tabu search and simulated anneal- 

ing hybrid approaches ( Zhang and Deng, 2005 ), population basin- 

hopping algorithms ( Addis et al., 2008b ), simulated annealing al- 

gorithms ( Mller et al., 2009 ), formulation space search algorithms 

( Lopez and Beasley, 2013 ), iterated local search algorithms ( Fu 

et al., 2013; Liu et al., 2015; 2009; Ye et al., 2013 ), and others. In 

2015, two new algorithms were published that yield excellent re- 

sults: the iterated Tabu search and variable neighborhood descent 

algorithm ( Zeng et al., 2015 ) and the evolutionary computation- 

based method ( Flores et al., 2015 ). 

We address the classic CPP: the equal circle packing problem 

(ECPP), which is also known as UCPP (unit circle packing problem). 

In this section, we first review ECPP mathematical methods, which 

are the basis for researching ECPP. We then concentrate on heuris- 
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tics for ECPP, which are more effective for large-scale problems. Fi- 

nally, we summarize our work. 

1.1. Mathematical methods for ECPP 

As a classical type of CPP, ECPP remains a difficult problem in 

the field of mathematics. In early ECPP studies, the value of n was 

relatively small, and researchers used mathematical analysis to not 

only find the optimal layout but also provide proofs on the op- 

timality. Kravitz (1967) , the first scholar to study ECPP, provided 

the layout for n = 2 , 3 , · · · , 19 with the container radius; however, 

no proof of optimality was provided. Graham (1968) proved the 

optimality for n = 2 , 3 , 4 , 5 , 6 , and 7. Pirl (1969) proved the op- 

timality for n = 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , and 10, and provided the lay- 

out for n = 11 , 12 , · · · , 19 at the same time. Goldberg (1971) im- 

proved Pirls layout for n = 14 , 16 , and 17; furthermore, Gold- 

bergs study provided the layout for n = 20 for the first time. 

Reis (1975) improved the layout for n = 17 based on Pirl’s re- 

search, and provided the first layout for n = 21 , 22 , 23 , 24 , and 

25. Melissen (1994) proved the layout configuration optimality for 

n = 11 , and Fodor (1999) ; 20 0 0 ); 20 03 ) proved the optimality 

for n = 12 , 13 , and 19. To summarize, only the optimality for 

n = 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , and 19 has been proved so far. 

1.2. Heuristics for ECPP 

Heuristics demonstrate their high effectiveness on ECPP. In this 

subsection, we introduce landmark heuristics for ECPP, and two 

key issues for solving ECPP. 

1.2.1. Landmark heuristics 

When n is relatively large, it is very difficult to find the optimal 

layout and prove the optimality. Heuristic algorithms for ECPP can 

be very efficient in finding optimal or suboptimal layouts. Although 

heuristics may not guarantee the theoretical optimality, they can 

find a layout in which the container radius is very close to the 

theoretical minimum. 

Graham et al. (1998) did some early work and proposed two 

heuristic methods. The first method simulates repulsion forces. 

It transforms ECPP into a problem of finding the minimum on ∑ 

1 ≤i ≤ j≤n ( 
λ

‖ S i −S j ‖ 2 ) 
m , where S 1 , S 2 , ���, S n correspond to the coor- 

dinates for the set of circle centers in the container, ‖ S i − S j ‖ ≥ 2 , 

λ is the zoom factor, and m is a large positive integer. For such an 

objective function, we can use some existing methods such as gra- 

dient descent to find a layout with the local minimum value. The 

second method is a billiards simulation. This is a quasi-physical 

method that regards the circle items as billiards. This algorithm 

starts with a small billiard radius and randomly assigns an ini- 

tial movement direction for each billiard. A series of collision mo- 

tions then occurs in the circular container. During the process, 

the authors slowly increase the sizes of the billiards. By repeat- 

edly running the algorithm, it is possible to find the global opti- 

mal solution. By comprehensively using repulsion forces and bil- 

liards simulations, Graham found the near-optimal layout for n = 

25 , 26 , · · · , 65 . 

There are many follow-up works based on heuristics. Here we 

highlight several landmark works. Akiyama et al. (2003) used a 

greedy method to find a local optimal solution. Their algorithm 

continuously improves the current layout by randomly moving one 

circle until the number of movements reaches an iteration limit 

(e.g., 30 0,0 0 0). By repeatedly running the greedy method, Akiyama 

found much denser layouts for n = 70, 73, 75, 77, 78, 79, and 80. 

Grosso et al. (2010) assumed that ECPP has the “funneling land- 

scape” characteristic, and used a monotone hopping strategy to 

look for the “funnel bottom.” In order to solve the funnel problem, 

they used the population hopping strategy to enhance the diversity 

of the layout. They found a number of denser layout schemes for 

66 ≤ n ≤ 100. Huang and Ye (2011) proposed a global optimization 

algorithm using a quasi-physical model. They proposed two new 

quasi-physical strategies and found 63 denser layouts among the 

200 instances for n = 1 , 2 , · · · , 199 , 200 . 

1.2.2. Two key issues 

There are two key issues in solving the ECPP. First, random or 

given layouts must be optimized to increase their likelihood of 

reaching the local optimum layout. Second, when we reach a local 

optimal layout that is not feasible, that is, there is overlap among 

some circles, we need a strategy to jump out of the local mini- 

mum layout and reach a new layout that inherits the advantages 

of the previous local optimum. We could then continue the local 

optimization to reach another local minimum, and we aim to even- 

tually obtain an optimal or near-optimal layout. 

The repulsion forces and billiards simulation of 

Graham et al. (1998) , the monotone hopping strategy of 

Grosso et al. (2010) , and the elastic force movement of Huang and 

Ye (2011) described above can all be categorized as local opti- 

mization methods. Other examples of effective methods include 

the TAMSASS-PECS method ( Szabó et al., 2005 ), the nonlinear 

optimization method ( Birgin et al., 2005 ) and the reformulation 

descent algorithm ( Mladenovi ́c et al., 2005 ). Each of these al- 

gorithms has its own advantages, depending on the number of 

circles and the container shapes (squares, circles, rectangles, or 

polygons). 

There are diverse methods for the basin-hopping strategy. For 

example, the small random perturbation method ( Addis et al., 

2008a ) formed a new layout by moving several circles in the local 

optimal layout to some random places. However, owing to its pure 

randomness, this method may destroy holistic heredity. Huang and 

Ye (2011) considered elastic force, attractive force, and repulsive 

force to promote the entire layout to a new form. They used three 

parameters c 1 , c 2 and steps to control the strength of the attractive 

force, the strength of the repulsive force, and the duration time of 

the abrupt movement. Zeng et al. (2015) proposed another strategy 

for moving random circles to vacant places in the container. By di- 

viding the entire container into square grids, Zeng et al. regarded 

a vacant point with a large vacant degree as a candidate insertion 

point for the center of the “jumping circle;” this could improve the 

current layout to a certain extent. 

1.3. Our work 

We propose an efficient quasi-physical quasi-human (QPQH) 

algorithm for solving ECPP. We adopted the physical model 

( Huang and Ye, 2011 ) popularly used for solving CPP. Moreover, 

through the establishment of the physical model, we look for 

a minimum of the objective function using the classical Quasi- 

Newton method: the Broyden-Fletcher-Goldfarb-Shanno (BFGS) al- 

gorithm ( Liu and Nocedal, 1989 ). To speed up computations with- 

out losing much accuracy, we fully utilize the neighborhood struc- 

ture of the circles, and propose a local BFGS algorithm. We also 

propose a new basin-hopping strategy by shrinking the radius of 

the container. In the proposed QPQH algorithm, we iteratively ap- 

ply the local BFGS algorithm to achieve a new layout after a cer- 

tain number of continuous optimization iterations, and apply the 

basin-hopping strategy to jump out of the local minimum. Experi- 

ments on 320 ( n = 1 , 2 , · · · , 320 ) ECPP instances demonstrate the 

effectiveness of the proposed method. 

2. Problem formulation 

The equal circle packing problem (ECPP) can be described as 

packing n unit circle items into a circular container. There must 
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