
Computers and Operations Research 92 (2018) 37–46

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Efficiently enumerating all maximal cliques with bit-parallelism

Pablo San Segundo

a , ∗, Jorge Artieda

a , Darren Strash

b

a Centre for Automation and Robotics (UPM-CSIC), Jose Gutiérrez Abascal 2, Madrid 28006, Spain
b Department of Computer Science, Colgate University, Hamilton NY, USA

a r t i c l e i n f o

Article history:

Received 10 March 2017

Revised 5 December 2017

Accepted 6 December 2017

Available online 9 December 2017

Keywords:

Maximal clique

Bitstring

Branch-and-bound

Subgraph enumeration

Combinatorial optimization

a b s t r a c t

The maximal clique enumeration (MCE) problem has numerous applications in biology, chemistry, sociol-

ogy, and graph modeling. Though this problem is well studied, most current research focuses on finding

solutions in large sparse graphs or very dense graphs, while sacrificing efficiency on the most difficult

medium-density benchmark instances that are representative of data sets often encountered in practice.

We show that techniques that have been successfully applied to the maximum clique problem give sig-

nificant speed gains over the state-of-the-art MCE algorithms on these instances. Specifically, we show

that a simple greedy pivot selection based on a fixed maximum-degree first ordering of vertices, when

combined with bit-parallelism, performs consistently better than the theoretical worst-case optimal piv-

oting of the state-of-the-art algorithms of Tomita et al. [Theoretical Computer Science, 2006] and Naudé

[Theoretical Computer Science, 2016].

Experiments show that our algorithm is faster than the worst-case optimal algorithm of Tomita et al.

on 60 out of 74 standard structured and random benchmark instances: we solve 48 instances 1.2 to 2.2

times faster, and solve the remaining 12 instances 3.6 to 47.6 times faster. We also see consistent speed

improvements over the algorithm of Naudé: solving 61 instances 1.2 to 2.4 times faster. To the best of

our knowledge, we are the first to achieve such speed-ups compared to these state-of-the-art algorithms

on these standard benchmarks.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The maximal clique enumeration (MCE) problem—the problem

of enumerating all maximal cliques of a given graph—has numer-

ous applications spanning many disciplines (Augustson and Minker,

1970; Gardiner et al., 20 0 0; Horaud and Skordas, 1989). Unlike

the NP-hard maximum clique problem (MCP) (Garey and Johnson,

1990; Karp, 1972), the MCE problem is known to require expo-

nential time in the worst case, since there may be an exponential

number of maximal cliques to enumerate. For an n -vertex graph,

there may be �(3 n /3) maximal cliques, known as the Moon–Moser

bound (Moon and Moser, 1965), and therefore any algorithm that

enumerates all maximal cliques must use at least this amount of

time in the worst case. Interestingly, not only does there exist an

algorithm that runs in worst-case optimal �(3 n /3) time, that of

Tomita et al. (2006) , but it is also among the fastest algorithms

in practice. Eppstein et al. (2013) further tightened these bounds

for the case of graphs with low degeneracy (Lick and White, 1970),

the smallest value d such that every induced subgraph of G has a

vertex of degree at most d . They showed that graphs with degen-

∗ Corresponding author.

E-mail addresses: pablo.sansegundo@upm.es (P. San Segundo), dstrash@c

s.colgate.edu (D. Strash).

eracy d have �(d(n − d)3 d/ 3) maximal cliques, and further give an

algorithm to enumerate all maximal cliques in time O (d(n −
d)3 d/ 3) , which matches the worst-case output size. Moreover, they

showed that their method is efficient in practice on real-world

complex networks, which typically have low degeneracy.

These algorithms, as well as many other efficient algorithms,

are derived from the Bron-Kerbosch algorithm—which maintains

both a currently growing clique and a set of already examined

vertices throughout recursive backtracking search, only reporting a

clique when it is found to be maximal (Bron and Kerbosch, 1973).

However, a separate class of theoretically-efficient algorithms,

those with bounded time delay (the time between reported

cliques), exist for the MCE problem, which use the reverse search

technique of Avis and Fukuda (1996) . Tsukiyama et al. (1977) were

the first to give a bounded time delay algorithm for this prob-

lem, giving an algorithm with delay O (nm) for graphs with m

edges. Chiba and Nishizeki (1985) improved this result for graphs

with arboricity a , a sparsity measure, giving a O (am)-delay al-

gorithm. Makino and Uno (2004) removed the linear depen-

dence on m , reducing the delay to O (�4), where � is the maxi-

mum degree of G ; however, their technique uses quadratic space.

Chang et al. (2013) further showed how to reduce the preprocess-

ing time of Makino and Uno from quadratic to linear, while giving

a tighter delay of O (�h 3), where h is the h -index of the graph.

https://doi.org/10.1016/j.cor.2017.12.006

0305-0548/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cor.2017.12.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.12.006&domain=pdf
mailto:pablo.sansegundo@upm.es
mailto:dstrash@cs.colgate.edu
https://doi.org/10.1016/j.cor.2017.12.006

38 P. San Segundo et al. / Computers and Operations Research 92 (2018) 37–46

Finally, Conte et al. (2016) gave the first bounded delay maximal

clique enumeration algorithm with sublinear extra space, with de-

lay O (qd(� + qd) polylog (n + m)) , where q is the size of a maxi-

mum clique.

Though these bounded time delay algorithms are theoreti-

cally efficient, Bron–Kerbosch-derived algorithms are much faster

in practice. As noted by Conte et al. (2016) , their algorithm

(which is at present the fastest bounded time delay algorithm)

is 3.7 times slower than the Bron–Kerbosch-derived algorithm by

Eppstein et al. (2013) on sparse graphs, which is itself slower

than the algorithm by Tomita et al. (2006) on dense and medium-

density instances that we consider here. Even though the algo-

rithm by Tomita et al. (2006) has worst-case exponential time, re-

peated experiments show that it is fast on a variety of benchmark

instances (Cazals and Karande, 2006; Eppstein et al., 2013; Koch,

2001; Naudé, 2016; Tomita et al., 2006). At the time of writing, we

are unaware of any algorithms that achieve significant speedups

over this algorithm, though moderate speedups are possible on

graphs that are either very sparse (Eppstein et al., 2013) or very

dense (Naudé, 2016).

For sparse graphs, the algorithm by Eppstein et al. (2013) ri-

vals that of Tomita et al. (2006) while only consuming space lin-

ear in the size of the graph, whereas the algorithm of Tomita

et al. requires quadratic space to store an adjacency matrix.

Dasari et al. (2014) further improved this result by factors of 2-

4x using bit-parallelism, though the main algorithm remains un-

changed. For larger instances, external memory algorithms have

been developed which take advantage of the property that real-

world sparse graphs typically have small induced subgraphs that

can fit into memory (Cheng et al., 2012). For even larger in-

stances, algorithms have been implemented in the MapReduce

framework (Wu et al., 2009).

In the case of dense graphs, researchers have looked at dif-

ferent strategies for pruning search. In particular, Cazals and

Karande (2006) showed that detecting and removing dominated

vertices is much faster than the traditional pivoting method

commonly used in the fastest algorithms, such as that of

Tomita et al. (2006) , when graphs are dense. This is because the

time to pick a pivot can be very expensive when there are many

edges. Naudé (2016) investigated the pivot computation set, and

showed that it is possible to break out of pivot computation early

under certain conditions, and still maintain a worst-case optimal

running time of O (3 n /3). In Naudé’s experiments on small random

graphs (with 180 vertices or less), his algorithm is at most 1.56

times faster than that of Tomita et al. (Tomita et al., 2006) on

graphs with a high edge density of 0.8; on the other hand, on

graphs with a lower edge density of 0.4, the method gives a mod-

est speed up of at most 13%.

Surprisingly, recent algorithms have focused only on sparse and

high density graphs, and have not considered performance on

medium density graphs, which are representative of many real-

world instances, and where pruning techniques based on struc-

ture, different from the theoretical-optimal pivoting, are much less

effective. In particular, the benchmarks from the second DIMACS

challenge (Johnson and Trick, 1996) and BHOSLIB (Xu, 2004), have

medium density and are among the most difficult sets in practice.

As far as we are aware, no algorithm gives significant improvement

over the algorithm of Tomita et al. (2006) for these instances.

1.1. Our contribution

We provide a new algorithm for the MCE problem, and show

that it consistently outperforms the state-of-the-art algorithms of

Tomita et al. (2006) and Naudé (2016) on benchmark graphs that

are representative of difficult instances. This work is inspired by

a number of techniques that have been described for branch and

bound maximum clique solvers, such as employing an initial or-

dering of nodes (Carraghan and Pardalos, 1990; San Segundo et al.,

2013, 2011; Tomita and Kameda, 2006; Tomita and Seki, 2003;

Tomita et al., 2010), the use of bit-parallelism (San Segundo et al.,

2013, 2011) and keeping a fixed vertex ordering throughout recur-

sion (San Segundo et al., 2013, 2011). Note that these solvers differ

from any MCE solver in the fact that they also prune enumerable

cliques in the search tree when they cannot possibly improve the

incumbent solution.

While leading MCP solvers (as well as the MCE solver by

Eppstein et al. (2013) , and the improved bitstring encoding pro-

posed by Dasari et al. (2014)) attempt to quickly reduce subprob-

lem size by branching on vertices initially (at the root) with low

degree (following a degeneracy ordering), we evaluate vertices with

high degree according to a maximum-degree-first ordering . This or-

dering helps us address one of the main challenges when applying

bit-parallelism to state-of-the-art MCE solvers: efficient pivot selec-

tion , for which most algorithms must enumerate vertices to find a

high degree vertex in the current subproblem (Cazals and Karande,

20 06, 20 08; Eppstein et al., 2013; Koch, 2001; Naudé, 2016; Tomita

et al., 2006). Moreover, enumeration of items is a well-known bot-

tleneck of bitstrings.

With our proposed initial ordering, we efficiently perform a

simple greedy pivot selection strategy, which allows us to pivot

without enumeration. We likewise branch on vertices according to

the initial ordering, since they are likely to have high degree in

the subproblem being evaluated. Although this strategy increases

the size of the search space on average when compared to the

theoretical algorithm of Tomita et al. (2006) , our algorithm out-

performs state-of-the-art solvers on 60 out of 74 of instances

tested, which we attribute to the speed of greedy pivot selection,

when combined with a bitstring representation. In contrast, a di-

rect bit-parallel implementation of the state-of-the-art solver by

Tomita et al. (2006) is slower than the original implementation on

most instances.

1.2. Organization

The remainder of our paper is organized as follows: in

Section 2 we cover useful definitions and other preliminaries and

in Section 3 we describe variations of the Bron-Kerbosch algo-

rithm. Our contributions appear in Section 4 , where we describe

our new enumeration algorithm. We then present our experimen-

tal results in Section 6 , and conclude and give ideas for future work

in Section 7 .

2. Preliminaries

We work with a simple undirected graph G = (V, E) , which con-

sists of a finite set of vertices V = { 1 , 2 , . . . , n } and a finite set

of edges E ⊆V × V made up of pairs of distinct vertices. Two ver-

tices u and v are said to be adjacent (or neighbors) if (u, v) ∈ E .

The neighborhood of a vertex v , denoted N (v) (or N G (v) when the

graph needs to be mentioned explicitly), is defined as N(v) = { u ∈

V | (u, v) ∈ E} . We denote the degree of a vertex v by deg(v), and

denote the maximum degree of G by �(G) = max v ∈ V deg (v) .
A clique , also called a complete subgraph, is a set K ⊆V of pair-

wise adjacent vertices. A clique K is said to be maximal if there is

no vertex in V �K that is adjacent to all vertices in K . Note that this

definition is different from a maximum clique , which is a clique of

maximum cardinality ω(G).

Finally, we also consider the following terminology and defini-

tions for vertex orderings. We define a vertex ordering to be a se-

quence v 1 , v 2 , . . . , v n of the vertices in V , where v i is said to be in

position i , and further define a permutation φ : V → { 1 , 2 , . . . , n }
that maps each vertex v i ∈ V to its position i ; that is φ(v i) = i . The

Download English Version:

https://daneshyari.com/en/article/6892683

Download Persian Version:

https://daneshyari.com/article/6892683

Daneshyari.com

https://daneshyari.com/en/article/6892683
https://daneshyari.com/article/6892683
https://daneshyari.com

