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a b s t r a c t 

In this paper we applied Benders’ decomposition to the Curriculum-Based Course Timetabling (CBCT) 

problem. The objective of the CBCT problem is to assign a set of lectures to time slots and rooms. Our 

approach was based on segmenting the problem into time scheduling and room allocation problems. 

The Benders’ algorithm was then employed to generate cuts that connected the time schedule and room 

allocation. We generated only feasibility cuts, meaning that most of the solutions we obtained from a 

mixed integer programming solver were infeasible, therefore, we also provided a heuristic in order to 

regain feasibility. 

We compared our algorithm with other approaches from the literature for a total of 32 data instances. 

We obtained a lower bound on 23 of the instances, which were at least as good as the lower bounds 

obtained by the state-of-the-art, and on eight of these, our lower bounds were higher. On two of the 

instances, our lower bound was an improvement of the currently best-known. Lastly, we compared our 

decomposition to the model without the decomposition on an additional six instances, which are much 

larger than the other 32. To our knowledge, this was the first time that lower bounds were calculated for 

these six instances. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Curriculum-based course timetabling 

In this work we considered the Curriculum-Based Course 

Timetabling Problem (CBCT) introduced in Track 3 of the Sec- 

ond International Timetabling Competition (ITC2007) as described 

by Di Gaspero et al. (2007) , McCollum et al. (2010) and 

Bonutti et al. (2012) . Most of the work on CBCT focused on the 

discovery of high-quality solutions using heuristics. The drawback 

of these heuristics is that they do not provide any proof of qual- 

ity (e.g., how far from optimality the solutions actually are). We 

need bounding and exact methods to be able to validate the qual- 

ity of the heuristics and not much work has been put into the de- 

velopment of these methods. In this article we applied Benders’ 

decomposition to a Mixed Integer Programming (MIP) model that 

we presented in Bagger et al. (2016) . We submitted the technical 

report ( Bagger et al., 2016 ) to the Annals of Operations Research 

(ANOR). ANOR is, as yet, unaware of our work in this article as we 
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had not fully developed the method. We provide the model from 

the report in Section 2.1 . The proof of the correctness of the model 

is in the technical report which is essential, as the application of 

the decomposition in this paper relies on that model. 

The CBCT problem entails that we must schedule weekly lec- 

tures for multiple courses into time periods and assign the lectures 

to rooms. We are given a set of days, each divided into a set of 

time slots. We refer to a day and time slot combination as a pe- 

riod. The basic entities of the problem are the courses to schedule, 

the periods , and the rooms that are available. The problem origi- 

nates from a real world application and has thus received signifi- 

cant attention since the competition. Each course contains a num- 

ber of lectures that must all be scheduled within a period, and as- 

signed a room. Furthermore, all of the lectures are to be scheduled 

within distinct periods. This requirement is referred to as the Lec- 

tures (L ) constraint. For a course, some of the periods can be spec- 

ified as unavailable , i.e., periods where it is not allowed to sched- 

ule the course. This requirement is referred to as the Availability 

(A ) constraint. There are no constraints on assigning the courses 

to rooms, i.e., any course can be assigned to any room. Aside from 

the courses, the periods and the rooms, the problem also contains 

lecturers and curricula ; hence the name Curriculum-Based Course 

Timetabling . Each course is taught by a lecturer, and a curriculum is 

a set of courses that may be followed by the same students. If two 
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courses are taught by the same lecturer, or belong to the same cur- 

riculum they cannot have lectures scheduled within the same peri- 

ods. This requirement is referred to as the Conflicts (C ) constraint. 

For each room, one lecture, at most, can be assigned in any pe- 

riod, which is referred to as the Room Occupancy ( RO ) constraint. 

The objective of the CBCT is to develop a timetable that fulfills all 

of the latter mentioned requirements, L, A, C and RO , while min- 

imizing a weighted sum of the violation of four soft constraints; 

Room Capacity ( RC ) , Room Stability ( RStab ) , Minimum Working 

Days ( MWD ) and Isolated Lectures ( IL ) . When a course is assigned 

to a room where the number of seats is smaller than the number 

of students that are attending the course, then the constraint RC is 

violated by one for each student above the capacity of the room. 

It is desirable to assign lectures from the same course to as few 

distinct rooms as possible. A course violates the constraint RStab 

by the total number of distinct rooms that it is assigned to minus 

one. The constraint MWD is the desire to spread the lectures across 

a given number of days. We say that a day is a working day for a 

course if at least one lecture from the course is scheduled in a time 

slot on that day. For each course, a number of minimum working 

days is provided and if the number of working days is below this 

number then the violation of the constraint is the difference. The 

final constraint IL is associated with the curricula. For each cur- 

riculum it is desired to have as few isolated lectures as possible. 

Each isolated lecture counts as one violation. A curriculum has an 

isolated lecture in a period if any of the courses belonging to the 

curriculum has a lecture scheduled in the period, and none of the 

courses have lectures scheduled in the adjacent periods. We say 

that two periods are adjacent if they belong to the same day and 

are in consecutive time slots. 

In the following Section 1.1 we provide an overview of other 

approaches that were applied to CBCT. In Section 2 we initially 

provide a brief introduction to Benders’ decomposition, and then 

describe how we applied it to CBCT. In Section 3 we describe a 

heuristic to repair partially infeasible solutions, where by partially 

infeasible we refer to solutions wherein the time schedule is fea- 

sible, but not the room assignment. In Section 4 we describe the 

computational results. Lastly, in Section 5 we state our conclusions 

on this work. 

1.1. Related research 

As we considered a MIP model for the problem, we focused pri- 

marily on other MIP-based approaches in the literature. For a thor- 

ough overview of the problem and different approaches for CBCT 

we refer to Bettinelli et al. (2015) . 

Burke et al. (2008 ; 2010 ) introduced a compact MIP formula- 

tion that was exact, in the sense that the optimal solution can 

be found by a generic MIP solver given enough computational re- 

sources. However, many instances of the CBCT could not be solved 

for this formulation within a reasonable time using a MIP solver; 

hence Burke et al. (2010) proposed methods to derive lower and 

upper bounds. They obtained lower bounds by aggregating the 

rooms into multi-rooms . For each multi-room the number of lec- 

tures that can be scheduled in it, for any period, is equal to the 

number of rooms that were aggregated. This problem provides a 

lower bound for CBCT. To obtain an upper bound they fixed the pe- 

riods (or portions thereof) according to the solution from the lower 

bounding mechanism, and subsequently assigned rooms to the lec- 

tures. Burke et al. (2012) proposed an exact branch-and-cut algo- 

rithm which they also based on the compact formulation; how- 

ever, some of the objective costs were left out and instead added 

as cuts during the solution process. This can be seen as a Benders’ 

decomposition; however, rather than generating the cuts dynami- 

cally, they were generated a priori and then added as required. 

Lach and Lübbecke (2008 ; 2012 ) proposed a method that di- 

vided the CBCT into two stages. The began by grouping the rooms 

together such that if two rooms had the same capacity, then they 

were in the same group. Then, in the first stage, they scheduled the 

courses into periods and assigned them to these capacities. This 

method is a Benders’ Decomposition ( Lübbecke, 2015 ). In the sec- 

ond stage, they assigned the courses to the rooms, where the so- 

lution from the first stage was employed to fix the courses for the 

determined periods and the selected room capacities. 

Hao and Benlic (2011) divided the MIP model that Lach and 

Lübbecke (2012) used in the first-stage into smaller components 

by relaxing or removing some of the constraints. These relax- 

ations made it possible to decompose the model into a set of 

sub-problems, where they calculated a lower bound for each sub- 

problem. The sum of all these lower bounds was then a lower 

bound for CBCT. 

Cacchiani et al. (2013) presented multiple extended MIP formu- 

lation, i.e., models with an exponential number of variables. The 

approach that provided the best results divided the problem into 

two parts; one that focused on the time scheduling-related soft 

constraints, while the other focused on the room-related soft con- 

straints. They calculated a lower bound for each part and the sum 

of these lower bounds was then a lower bound for CBCT. 

In Bagger et al. (2016) two MIP models were presented 

that were inspired by Lach and Lübbecke (2008 ; 2012 ) and 

Burke et al. (2008 ; 2010 ). The division of the problem described 

by Lach and Lübbecke (2012) was applied (excluding the notion of 

distinct capacities), where it was shown that the two stages could 

be connected using two underlying flow network formulations. The 

first formulation was based on a minimum cost flow network, and 

performed as the best of the two. The second formulation was 

based on a multi-commodity flow problem which was the formu- 

lation where we applied Benders’ decomposition ( Benders, 1962 ) 

in this article. The rationale for using the last formulation, although 

it did not perform as well as the first, is that the underlying net- 

work is a feasibility problem. Therefore, we did not need to gener- 

ate any optimality cuts, only feasibility cuts. 

2. Benders’ decomposition 

In this section we give an introduction to Benders’ decomposi- 

tion followed by our application of the technique. Our introduc- 

tion is a crude overview, and we refer to ( Benders, 1962 ) and 

(Martin, 1999, chapter 10) for a detailed description. We describe 

the method based on a model that contains two types of variables, 

x and y . The x variables are non-negative continuous variables, and 

we do not have any assumptions on the y variables, i.e., x ≥ 0 and 

y ∈ Y where Y can be any domain (e.g., the set of integers). Consider 

the MIP model (1) . 

min c � x + f (y ) 

s.t. Ax + B (y ) ≥ b 

y ∈ Y 

x ≥ 0 (1) 

In the model (1) c ∈ R 

n is the cost vector of the x variables, 

A ∈ R 

n ×m is the constraint matrix of the x variables and b ∈ R 

m is 

the right-hand-side vector of the constraints. f : Y → R is some 

function to evaluate the cost of the y variables and B is a vec- 

tor function that evaluates the contribution of the y variables for 

the constraints. If we fix the y variables to some value in the do- 

main Y then what remains is a linear programme (LP). This as- 

sumption can be extended as described by Geoffrion (1972) , but 

we stick to the (LP) case in this context. Model (1) can be rewrit- 
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