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a b s t r a c t

We consider the revenue management problem of capacity control under customer choice behavior. An
exact solution of the underlying stochastic dynamic program is difficult because of the multi-dimen-
sional state space and, thus, approximate dynamic programming (ADP) techniques are widely used. The
key idea of ADP is to encode the multi-dimensional state space by a small number of basis functions,
often leading to a parametric approximation of the dynamic program’s value function. In general, two
classes of ADP techniques for learning value function approximations exist: mathematical programming
and simulation. So far, the literature on capacity control largely focuses on the first class.

In this paper, we develop a least squares approximate policy iteration (API) approach which belongs
to the second class. Thereby, we suggest value function approximations that are linear in the parameters,
and we estimate the parameters via linear least squares regression. Exploiting both exact and heuristic
knowledge from the value function, we enforce structural constraints on the parameters to facilitate
learning a good policy. We perform an extensive simulation study to investigate the performance of our
approach. The results show that it is able to obtain competitive revenues compared to and often out-
performs state-of-the-art capacity control methods in reasonable computational time. Depending on the
scarcity of capacity and the point in time, revenue improvements of around 1% or more can be observed.
Furthermore, the proposed approach contributes to simulation-based ADP, bringing forth research on
numerically estimating piecewise linear value function approximations and their application in revenue
management environments.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decades, revenue management and particularly
capacity control, which is at the heart of modern revenue man-
agement systems, have evolved into one of the most successful
application areas of operations research. For a long time, academic
research on revenue management assumed that demand is strictly
associated with a product and thus not dependent on the market
conditions and other products offered. However, the integration of
customer choice behavior is today considered the most important
trend in recent years.

We therefore reconsider the well-known revenue management
problem of capacity control under customer choice behavior. The
problem can be briefly stated as follows: a firm offers differently
priced products that are provided using a number of shared re-
sources with a fixed capacity. The products are possibly linked to
sales restrictions and other conditions to segment the market. Cus-
tomers arrive successively and stochastically over a given booking

horizon with each customer purchasing at most one unit of a pro-
duct. The chosen product may depend on the available products.
Service provision occurs at the end of the booking horizon. Any
capacity remaining at the end is worthless and overbooking of the
given resources’ capacity is not allowed. Capacity control now con-
tinuously addresses the following decision problem throughout the
booking horizon: Which products should the firm offer for sale such
that the overall expected revenue is maximized?

The described problem can be solved by dynamic program-
ming, using a recursively formulated value function (Bellman
equation). However, an exact solution is difficult due to the multi-
dimensional state space which comprises the resources’ remaining
capacity. Therefore, approximate dynamic programming (ADP)
techniques are often used. In doing so, the multi-dimensional state
space is usually encoded by a small number of basis functions that
sufficiently describe the current booking status, leading to a
(parametric) approximation of the value function. Virtually all
approximations make use of additive bid prices that represent the
marginal value of capacity such that the state space decomposes
by resources.
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Broadly speaking, two classes for learning value function ap-
proximations exist: mathematical programming and simulation.
So far, the literature on capacity control largely focuses on math-
ematical programming. In contrast, simulation-based ADP—which
we consider in this paper—is quite underrepresented. In the lan-
guage of capacity control, the central idea of simulation-based ADP
is to simulate thousands of booking horizons by Monte Carlo si-
mulation and thereby iteratively learn the value function ap-
proximation. In what follows, a sample path refers to the sto-
chastic exogenous information of a simulated booking horizon.
While stepping forward in time following a specific sample path,
decisions are made given the current approximation, and the in-
formation gathered is used to update the approximation.

In this context, our main contribution is to develop a least
squares approximate policy iteration (API) approach for learning
bid prices. Thereby, we investigate value function approximations
that are linear as well as piecewise linear (concave) in the re-
sources’ remaining capacity. Because the approximations are also
linear in their parameters, we can estimate them via linear least
squares regression. Thereby, we mimic either known or heuristic
properties of the optimal expected revenue and of bid prices by
enforcing structural constraints on the parameters. This advance-
ment of common simulation-based ADP approaches turns out to
have a critical impact on performance.

In a simulation study, we first show that the approach leads to
good value function approximations in examples with only one
resource. Then, we show that the approach is competitive with the
dynamic programming decomposition (DPD) approach in network
settings, which is state-of-the-art to approximately solving dy-
namic programs in a capacity control environment, and even
outperforms it in many cases. Revenue improvements of around
1% or more are observable particularly when capacity is scarce or
when booking horizons reflecting a later point in time are con-
sidered. Revenue improvements in this range are widely ac-
knowledged to have a big impact on the overall profit.

From a practical point of view, the proposed approach is par-
ticularly interesting because it is rather independent of the pre-
sumed customer choice behavior. Furthermore, the paper con-
tributes to the research on simulation-based ADP giving a rough
guideline how to design corresponding approaches in the field of
revenue management. Moreover, we provide a simple and in-
tuitive approach for numerical estimation of piecewise linear va-
lue function approximations that can be easily adapted to other
applications.

The remainder of the paper is structured as follows: In Section
2, we formalize the problem statement, review the relevant sci-
entific literature and position our work. Based upon this, we de-
velop our approach in Section 3. In Section 4, we present the re-
sults obtained in our simulation study. After a discussion of
managerial and theoretical insights in Section 5, we conclude the
paper and give an outlook on future research in Section 6.

2. Background and previous research

We first formalize the problem statement from Section 1, de-
scribing the setting and notation (Section 2.1). We then discuss
current solution approaches (Section 2.2) and review the most
relevant scientific literature on simulation-based ADP (Section
2.3).

2.1. Problem formulation

There is an extensive literature on revenue management
models that allow for the automation of capacity control. Over-
views are found in the textbooks by Talluri and van Ryzin [38] and

Phillips [30].
Gallego et al. [9], Talluri and van Ryzin [37], and Liu and van

Ryzin [20] established capacity control under a general discrete
choice model of demand, allowing customers to substitute among
several more or less suitable products. We follow their setting and
consider a firm that disposes of resources = …h m1, , which are
jointly used by products = …j n1, , . The products are associated
with revenues = ( … )r r r, , n

T
1 . The capacity consumption of one unit

of a product j is given by ( )= …a a a, ,j j mj
T

1 with =a 1hj if product j
uses resource h or =a 0hj else. The resources’ initial capacity is

described by ( )= …c c c, , m
T0

1
0 0 . The vector = ( … )c c c, , m

T
1 denotes

resources’ remaining capacity, and selling a product j reduces
capacity to −c aj.

The booking horizon is discretized into sufficiently small time
periods = …t T1, , , such that in each period t at most one cus-
tomer arrives who purchases at most one unit of one product. The
periods are numbered forward in time. In each period t , the firm
selects the subset of products available for sale, called the offer set.
A possible offer set is captured by the vector = ( … )x x x, ,t t tn

T
1 of

binary decision variables, with =x 1tj if product j is offered in
period t and =x 0tj else. Depending on xt , product j is sold with
probability ( ) ≥xp 0j t , and no purchase is made with probability

( ) ≥xp 0t0 . The probabilities satisfy ( ) =xp 0j t if =x 0tj as well as

∑ ( ) + ( ) == x xp p 1j
n

j t t1 0 . Although one can easily include time-
varying purchase probabilities into the model presented, we fol-
low the literature and assume time-homogenous purchase prob-
abilities to ease the notation.

Let ( )cVt denote the optimal expected revenue-to-go in period t
with capacity c and let ( )Δ ( ) = ( ) − −+ + +c c c aV V Vj t t t j1 1 1 denote the
opportunity cost of selling one unit of product j in period t . Fur-
thermore, let ψ ψ ψ= ( … ), , T

T
1 represent a policy of the firm. The

policy is a function of the state c that gives the decision (i.e., the
offer set) to make in that state: ψ= ( )x ct t . The firm’s decision
problem now is to determine an optimal policy ψ* or, equivalently,
to choose an optimal offer set *xt in each period t , such that the
overall expected revenue ( )cV1

0 is maximized. The value function
( )cVt is computed recursively by (DP)

( )∑
{ }

( ) = ( )⋅ − Δ ( ) + ( ) ∀ ≥
( )∈ =

+ +⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

c x c c cV p r V V t 0max ,
1x

t
j

n

j t j j t t
0,1 1

1 1
t

n

with the boundary conditions ( ) = − ∞cVt if ≱c 0 and ( ) =+ cV 0T 1

if ≥c 0. Please note that the optimal policy and, thus, the revenue-
maximizing offer sets, are given by the solution of the decision
problem in each period t (i.e., the maximization in (1)):

( )∑
{ }

ψ* = *( ) ∈ ( )⋅ − Δ ( )
( )∈ =

+⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

x c x cp r Varg max
2x

t t
j

n

j t j j t
0,1 1

1
t

n

2.2. Current solution approaches

Roughly speaking, two issues make the exact solution of DP
(1) difficult: First, recursively computing the value function ( )cVt

for all states c is—apart from some simple cases—not possible due
to the multi-dimensional state space. Second, the decision pro-
blem (2) inherent in each period t is an assortment optimization
problem over 2n possible offer sets.

To address the first issue, virtually all ADP approaches ap-
proximate opportunity cost additively by means of bid prices
π ( )cth h that represent the value of one unit of capacity of resource h
at time t , given that the remaining capacity is ch:
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