
A branch and price approach for deployment of multi-tier software
services in clouds

Anders N. Gullhav n, Bjørn Nygreen
Department of Industrial Economics and Technology Management, The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

a r t i c l e i n f o

Article history:
Received 12 May 2015
Received in revised form
11 May 2016
Accepted 12 May 2016
Available online 13 May 2016

Keywords:
Branch and price
Shortest path problem with resource con-
straints
Multi-tier service
Replication
Cloud computing

a b s t r a c t

This paper considers a service deployment problem that combines service placement and replication level
decisions in a cloud computing context. The services are composed of multiple components that are to be
placed on nodes in the private cloud of the service provider or, if the private cloud has limited capacity, partly
in a public cloud. In the service delivery, the provider has to take into account the quality of service guarantees
offered to his end-users. To solve the problem, we develop a branch and price algorithm, where the sub-
problems both are formulated as a linear mixed integer program and a shortest path problem with resource
constraints (SPPRC) on a network with a special structure. The SPPRC can be solved by an exact label-setting
algorithm, but to speed up the solution process, we develop a heuristic label-setting algorithm based on a
reduced network and simplified dominance rule. Our results show that using the heuristic subproblem solver
is efficient. Furthermore, the branch and price algorithm performs better than a previously developed pre-
generation algorithm for the same problem. In addition, we analyze and discuss the differences in solutions
that utilize resources in a public cloud to different degrees. By conducting this analysis we are able to identify
some essential characteristics of good solutions.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, we are considering a service deployment problem
of a software-as-a-service (SaaS) provider that offers a set of ser-
vices to his end-users. In the provisioning, the SaaS provider (SP)
must scale his services according to the performance and avail-
ability guarantees specified in the service level agreements (SLAs)
contracts that define the services in terms of functionality and
quality. Furthermore, the SP also has to decide where to run the
services. A typical objective in this problem is to minimize the cost
of provision, while fulfilling the service quality guarantees.

In principle, this decision problem can be solved statically or dy-
namically. Herein, we consider the demand to vary over time, but
within certain periods, the demand is stationary in a stochastic sense.
When these periods are sufficiently long and recurring, that is, they
might reflect working hours, evenings, etc., it is possible to compute a
stationary deployment solution for each period, and apply the ap-
propriate solution when one enters a new period. If the infrastructure
running the services is failure-prone, it is necessary to complement
the stationary solution with a strategy to return from a failed state
back to the stationary solution. This strategy can be based on mi-
grating (by e.g., live migration [7]) or restarting service components

on preallocated backup locations, as proposed in [5], or based on
activating standby service components [8]. However, in cases where
the demand is constantly fluctuating and not in a stationary state, it is
necessary to solve the deployment problem dynamically, but such
cases are not considered here.

The different SaaS services offered by the SP are represented by
multi-tier services, which are services composed of several com-
ponents collaborating to provide a service to the end-users. An
example of a multi-tier service is a three-tier web service com-
posed of a web server tier, an application tier and a database tier.
Fig. 1 illustrates the structure of a three-tier web service. Each tier
corresponds to a software component, referred to as component
throughout this paper, which runs on one or more virtual ma-
chines (VMs), which in turn run on physical servers. E.g. in periods
of low service demand, the web server component of a service
might run on only one VM, while with increased demand, the
component is deployed by running multiple identical VMs in order
to provide a service in accordance with the SLA. While a compo-
nent might run on multiple VMs, a VM will only run one com-
ponent. The considered SP owns and operates a limited set of
servers, forming a private cloud, which are capable of running the
VMs of the service components. An important operational cost
component in a data center is the cost of energy, and a strategy
used to minimize the cost of energy usage in the VM scheduling is
to turn off servers that are not required with the current demand
[16]. For the SP, there might be periods where the service demand
is too high to be able to provide the services from the private cloud

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2016.05.007
0305-0548/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: anders.gullhav@iot.ntnu.no (A.N. Gullhav),

bjorn.nygreen@iot.ntnu.no (B. Nygreen).

Computers & Operations Research 75 (2016) 12–27

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.05.007
http://dx.doi.org/10.1016/j.cor.2016.05.007
http://dx.doi.org/10.1016/j.cor.2016.05.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.05.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.05.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.05.007&domain=pdf
mailto:anders.gullhav@iot.ntnu.no
mailto:bjorn.nygreen@iot.ntnu.no
http://dx.doi.org/10.1016/j.cor.2016.05.007
http://dx.doi.org/10.1016/j.cor.2016.05.007


alone. In such cases the SP has the option to lease resources from a
public infrastructure-as-a-service (IaaS) provider (e.g. Amazon
[1]), denoted a public cloud provider. When the infrastructure
used by the SP to provide his services is composed of both a pri-
vate and a public cloud, this infrastructure is referred to as a hy-
brid cloud [22]. In cases where the SP maintains a private infra-
structure, it is often desirable to fully utilize this infrastructure
before leasing capacity from an IaaS provider.

The private and public clouds typically consist of a large amount of
cheap, off-the-shelf hardware, which make the services prone to
failures, and hence, make fault tolerance an important consideration
in the deployment of cloud services. When a VM fails, one has to
provide a new VM to maintain service. A technique to improve the
fault tolerance is standby redundancy, that is, the principle of allo-
cating standby resources that can be activated in case of a failure. The
use of standby redundancy reduces the time from a failure until the
moment the new VM is up and running. This time is commonly
denoted failover time. Undheim et al. [28] present different ways to
implement standby redundancy in a cloud context. Moreover, soft-
ware systems and conceptual frameworks that employ standby re-
dundancy by running passive standby VMs on the infrastructure are
proposed by Cully et al. [8] and Distler et al. [9].

In [12], we present a novel optimization model of the service
deployment problem of the SP that includes decisions both related
to the replication of the components of multi-tier services and
related to the placement of the replicas of the components. In the
model, each component of a service could be replicated into a
number of load-balanced replicas, referred to as active replicas, and
in addition, passive replicas are used to improve the fault tolerance
of the component. However, since we are interested in the per-
formance and fault tolerance of the whole service, not only the
components, the selection of replication levels of the different
components of a service is linked. In cases where different services
interact through their placement (e.g., by running on the same
servers), the most cost-efficient way to replicate the components
of a given service is dependent of the replication of the compo-
nents of other services. This is reflected in the model. The re-
plication level decisions, i.e., deciding the number of active and
passive replicas of each component of each service, are somewhat
similar to the decisions of an optimization problem referred to as
the redundancy allocation problem [20]. This problem consists of
allocating parallel replicas to different subsystems in series so that
the reliability is over a given threshold, while minimizing the cost.

The service deployment problem was modeled as a linear
mixed-integer program (MIP), and solved using a commercial MIP
solver in [12]. We also reformulated the problem and obtained a
pattern-based formulation. The linear relaxation of the

reformulation was shown to be much stronger than that of the
former, direct MIP formulation. Nevertheless, the number of vari-
ables in the reformulation grew exponentially with the size of the
problem, and we could only optimize over a small subset of the
variables. Since we seek to find a stationary solution, we argue that
one can spend some time searching for a near-optimal or optimal
solution. If the solution quality is of more importance than the
time to find a solution, we suggest using an exact solution method.
Here, we propose a branch and price (B&P) algorithm, in which the
master problem is based on the mentioned pattern-based for-
mulation. The subproblem of the B&P is solved using a MIP solver
and a label-setting algorithm. The latter seeks to find the shortest
path in a network, which to our knowledge has a novel structure.
While developing an exact label-setting algorithm, we observed
that this algorithm has deficiencies related to its dominance rule.

A contribution of this paper is an efficient heuristic label-setting
algorithm based on a reduced network and simplified dominance rule.
Using this heuristic in conjunction with an exact MIP solver speeds up
the B&P algorithm. However, in some nodes of the enumeration tree,
no improving columns can be found, and hence, using the heuristic
algorithm is ineffective. Another contribution of this paper is a simple
rule to decide whether the heuristic algorithm should be used in a
node, or the exact MIP solver should be called directly. A major
question we seek to answer in our computational study is by which
methods the subproblem should be solved. The paper also provides a
discussion on how the size of the private cloud, relative to the service's
resource requirements, affects the solution structure.

The outline of the paper is as follows. Next, in Section 2, we pre-
sent some works related to the service deployment problem, and in
Section 3, we describe the problem in more detail. Two variants of the
problem are formulated in Section 4, before the B&P algorithm is
explained in Section 5. More details of the algorithm are found in
Appendix A. The numerical results of our experiments with the al-
gorithm, along with a discussion of the results, are presented in
Section 6. Finally, we conclude the paper in Section 7.

2. Related work

As stated in the introduction, the part of the problem that regards
the replication level decisions is related to the redundancy allocation
problem, which has applications in many areas including in the de-
sign of computer systems. Ashrafi et al. [3] present optimization
models with the goal to optimize the reliability of a software system.
More recently, Meedeniya et al. [21] use multi-objective optimization
to explore the trade-off between reliability and energy consumption
when building redundancy into an embedded system. While the

Fig. 1. Illustration of a three-tier web service.

A.N. Gullhav, B. Nygreen / Computers & Operations Research 75 (2016) 12–27 13



Download English Version:

https://daneshyari.com/en/article/6892743

Download Persian Version:

https://daneshyari.com/article/6892743

Daneshyari.com

https://daneshyari.com/en/article/6892743
https://daneshyari.com/article/6892743
https://daneshyari.com

