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ABSTRACT

Two main challenges in differential evolution (DE) are reducing the number of function evaluations
required to obtain optimal solutions and balancing the exploration and exploitation. In this paper, a local
abstract convex underestimate strategy based on abstract convexity theory is proposed to address these
two problems. First, the supporting hyperplanes are constructed for the neighboring individuals of the
trial individual. Consequently, the underestimate value of the trial individual can be obtained by the
supporting hyperplanes of its neighboring individuals. Through the guidance of the underestimate value
in the select operation, the number of function evaluations can be reduced obviously. Second, some
invalid regions of the domain where the global optimum cannot be found are safely excluded according
to the underestimate information to improve reliability and exploration efficiency. Finally, the descent
directions of supporting hyperplanes are employed for local enhancement to enhance exploitation
capability. Accordingly, a novel DE algorithm using local abstract convex underestimate strategy (DELU)
is proposed. Numerical experiments on 23 bound-constrained benchmark functions show that the
proposed DELU is significantly better than, or at least comparable to several state-of-the art DE variants,

non-DE algorithms, and surrogate-assisted evolutionary algorithms.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Global optimization has become one of the most widely used
techniques for modeling and analyzing practical problems [1].
Much progress in the fields of science, economy, and engineering
relies heavily on numerical techniques to obtain global optimal
solutions for optimization problems. However, an algorithm may
get trapped into the local optimum for large-scale real-world op-
timization problems. In view of the complexity of the problem,
traditional algorithms, such as the gradient-based algorithms,
cannot be used to find the global optimum.

Evolutionary algorithms (EAs) are a broad class of stochastic
optimization algorithms inspired by the natural evolution of spe-
cies. EAs have been successfully applied to solve numerous opti-
mization problems in various fields. The EAs family includes dif-
ferential evolution (DE) [2], genetic algorithm (GA) [3], particle
swarm optimization (PSO) [4], evolution strategies (ES) [5], and
evolutionary programming (EP) [6]. The properties such as deri-
vative-free and strong robustness make these algorithms attrac-
tive to applications of various real-world optimization problems.

DE, which was proposed by Storn and Price [2], has been
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proven to be a simple yet effective stochastic global optimization
algorithm in EAs. It is well-known for its simple structure, ease of
use, robustness and speed. Owing to these advantages, DE has
been successfully applied in diverse fields [7,8], such as power
systems [9], communication [10], chemical engineering [11], optics
[12], and bioinformatics [13]. However, despite having several
striking advantages and successful applications in diverse fields,
DE has been shown to have certain weaknesses. A large number of
function evaluations are needed to find optimal solutions, which
leads to an increase in computational time, particularly for ex-
pensive-to-evaluate optimization problems in real applications.
For example, for the gasifier problem in [14], function evaluations
account for more than 99% of the entire searching time. Greedy
selection strategy accelerates the convergence of the algorithm but
makes the algorithm easy to get trapped into local optimum.
In addition, DE is fast at exploring but slow at exploiting the
solution [15].

Surrogate model algorithms [16-18] have been recently de-
veloped to reduce the necessary number of function evaluations
while searching the global optimum of the problem. In surrogate
model algorithms, a surrogate model is used to replace compu-
tationally expensive real function evaluations. A surrogate model
usually be represented as f(x) = s(x) + ¢, where f{x) is the real
function value of the point x, s(x) is the value obtained by the
surrogate model, and € is the error between them. The main
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advantage of this approach is that the surrogate model has a lower
computational complexity than the original model of the problem,
thereby significantly reducing the computational cost. Because of
this advantage, surrogate models are widely utilized in many
fields, such as the optimization of helicopter rotor blades [19], the
optimization design of corrugated beam guardrails [20], and the
inverse calculation of in situ stress in rock mass [21]. However,
selecting the appropriate surrogate model is a challenge because a
certain surrogate model cannot be suitable for all kinds of pro-
blems [22].

Abstract convexity theory [23,24] generalizes the property of
convex analysis that every convex function is the upper envelop of
its affine minorants [25]. Therefore, many nonconvex functions
(so-called abstract convex functions) can be represented as lower
envelopes of some basic simple functions. Based on this property,
Beliakov [26] proposed a cutting angle method (CAM). In CAM, the
simple functions are replaced by support functions. By using a
sequence of support functions, a lower approximation of the ori-
ginal problem can be obtained from below. Since the minimization
of the lower approximation is much simpler than the original
problem, it is called a relaxed model. Consequently, the global
minimum of the objective problem can be obtained by enumer-
ating all local minima of the relaxed model efficiently. Such un-
derestimate technique is very useful in various applications [27-
29]. However, to obtain a promising solution through a more ac-
curate lower approximation, the method needs to use numerous
support functions, which lead to the extremely high complexity.
Therefore, CAM is efficient only for the problem with less than 10
variables [30-32].

In this paper, an effective DE algorithm based on the under-
estimate technique presented in CAM is proposed. The proposed
algorithm, called DELU, uses local abstract convex underestimate
strategy to reduce the number of function evaluations and to
balance the exploration and exploitation of DE. Unlike the un-
derestimate technique used in CAM, the local underestimate
strategy only constructs the supporting hyperplanes for the
neighboring individuals of the trial individual, and the neighbor-
ing individuals are selected by the Euclidean distance from the
trial individual to the other individuals. Then, in the selection
operation, the underestimate value of the trial individual is cal-
culated by the supporting hyperplanes of the individuals near the
trial. According to the underestimate value, we can judge whether
the trial individual is worth evaluating, thus reducing the number
of function evaluations. Specifically, the underestimate informa-
tion also can be used to safely exclude some invalid regions of the
domain where the global optimum cannot be found. This proce-
dure prevents the algorithm from getting trapped in the local
minimum in some case and improves exploration efficiency. In
addition, exploitation capability is enhanced by employing the
descent directions of supporting hyperplanes for local enhance-
ment. Competitive experimental results are observed with respect
to commonly used benchmark functions. Compared with four
state-of-the-art DE variants, three non-DE algorithms and three
surrogate-assisted evolutionary algorithms, our approach per-
forms better, or at least comparably, in terms of the quality of the
final solutions and convergence speed. In addition, the proposed
local abstract convex underestimate strategy is also integrated into
some advanced DE variants to verify the effect on them. Experi-
mental results show that our proposed local abstract convex un-
derestimate strategy is able to enhance the advanced DE
algorithms.

The reminder of this paper is organized as follows. In Section 2,
some related works of DE are presented. Section 3 briefly de-
scribes the DE algorithm and the cutting angle method. Section 4
describes the proposed algorithm at a finer level of detail. Ex-
perimental results demonstrating the performance of the

proposed algorithm in comparison with five state-of-the art DE
variants, four non-DE algorithms, and three surrogate-assisted EAs
over a suite of bound-constrained numerical optimization func-
tions are presented in Section 5. Section 6 concludes this paper.

2. Related works

DE has drawn the attention of many researchers all over the
world. They have proposed many variants to reduce the compu-
tational cost, balance the exploration and exploitation, and im-
prove the optimization capability of DE. In this section, a brief
overview of these enhanced approaches is presented.

Some work mainly focuses on the function approximation
technique to reduce the computational cost. Queipo [33] proposed
a meta-model (or surrogate-model) as the approximation of the
original function to replace calls to the expensive function eva-
luations. Liu [16] proposed a Gaussian process surrogate model
assisted evolutionary algorithm, which map the training data to a
lower dimensional space by employing a dimension reduction
technique, and a new surrogate model-aware search mechanism is
used to make the search focus on the promising subregion. Zhou
[17] proposed a memetic algorithm using multi-surrogates. It
combined the regression and exact interpolating surrogate model
for local search to solve the expensive-to-evaluate problems. Liu
[34] proposed a fast differential evolution using k-nearest neigh-
bor predictor as function approximation. Jin [35] combined a
multi-layer perceptron (MLP), a kind of neural network (NN), with
covariance matrix adaptation evolution strategy (CMA-ES) to build
an efficient evolutionary optimization with function approxima-
tion. Zhang [36] developed a predictive distribution model com-
bining Gaussian stochastic model with fuzzy clustering based
model to measure the expected improvement of each individual.
Park [37] also proposed an efficient differential evolution using k-
nearest neighbor as function estimator to alleviate a burden of a
large number of function evaluations.

Many attempts have also been made to balance the exploration
and exploitation. Wang [38] proposed a novel hybrid discrete
differential evolution algorithm (HDDE), in which a local search
algorithm based on insert neighborhood structure is embedded to
balance the exploration and exploitation by enhancing the local
searching ability. Bhattacharya [9] proposed a hybrid differential
evolution with biogeography-based optimization (DE/BBO), which
combines the exploration of DE with the exploitation of BBO ef-
fectively. Cai [39] integrated the one-step k-means clustering into
DE (CDE), which makes the original DE more effective and effi-
cient. Piotrowski [40] proposed a differential evolution with se-
parated groups (DE-SG), which distributes population into small
groups, defines rules of exchange of information and individuals
between the groups and uses two different strategies to keep
balance between exploration and exploitation capabilities. Li [41]
proposed a modified differential evolution with self-adaptive
parameters method (MDE), in which a probability rule is used to
combine two different mutation rules to enhance the diversity of
the population and the convergence rate of the algorithm.

Apart from the above methods, some researches consider to
improve the optimization capability by the adaptive control
parameters and strategies. Qin [42] proposed a self-adaptive dif-
ferential evolution algorithm (SaDE), in which both trial vector
generation strategies and their associated control parameter va-
lues are gradually self-adapted by learning from their previous
experiences in generating promising solutions. Zhang [43] pro-
posed an adaptive differential evolution with optional external
archive (JADE) which improved optimization performance by im-
plementing a new mutation strategy with optional external ar-
chive and automatically updated the parameters by evolving the
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