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a b s t r a c t

The Team Orienteering Problem (TOP) is an attractive variant of the Vehicle Routing Problem (VRP). The
aim is to select customers and at the same time organize the visits for a vehicle fleet so as to maximize
the collected profits and subject to a travel time restriction on each vehicle.

In this paper, we investigate the effective use of a linear formulation with polynomial number of
variables to solve TOP. Cutting planes are the core components of our solving algorithm. It is first used to
solve smaller and intermediate models of the original problem by considering fewer vehicles. Useful
information are then retrieved to solve larger models, and eventually reaching the original problem.
Relatively new and dedicated methods for TOP, such as identification of irrelevant arcs and mandatory
customers, clique and independent-set cuts based on the incompatibilities, and profit/customer re-
striction on subsets of vehicles, are introduced.

We evaluated our algorithm on the standard benchmark of TOP. The results show that the algorithm
is competitive and is able to prove the optimality for 12 instances previously unsolved.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Team Orienteering Problem (TOP) was first mentioned in
Butt and Cavalier [7] as the Multiple Tour Maximum Collection
Problem (MTMCP). Later, the term TOP was formally introduced in
Chao et al. [9]. TOP is a variant of the Vehicle Routing Problem
(VRP) [4]. In this variant, a limited number of identical vehicles is
available to visit customers from a potential set. Two particular
depots, the departure and the arrival points are considered. Each
vehicle must perform its route starting from the departure depot
and returning to the arrival depot without exceeding its pre-
defined travel time limit. A certain amount of profit is associated
with each customer and must be collected at most once by the
fleet of vehicles. The aim is to organize an itinerary of visits re-
specting the above constraints for the fleet in such a way that the
total amount of collected profits from the visited customers is
maximized.

A special case of TOP is the one with a single vehicle. The re-
sulted problem is known as the Orienteering Problem (OP), or the
Selective Travelling Salesman Problem (STSP) (see the surveys by
Feillet et al. [13], Vansteenwegen et al. [32] and Gavalas et al. [16]).
OP/STSP is already NP-Hard [22], and so is TOP [9]. The

applications of TOP arise in various situations. For example in
Bouly et al. [5], the authors used TOP to model the schedule of
inspecting and repairing tasks in water distribution. Each task in
this case has a specific level of urgency which is similar to a profit.
Due to the limitation of available human and material resources,
the efficient selection of tasks as well as the route planning be-
come crucial to the quality of the schedule. A very similar appli-
cation was described in Tang and Miller-Hooks [29] to route
technicians to repair sites. In Souffriau et al. [26], Vansteenwegen
et al. [31] and Gavalas et al. [16], the tourist guide service that
offers to the customers the possibility to personalize their trips is
discussed as variants of TOP/OP. In this case, the objective is to
maximize the interest of customers on attractive places subject to
their duration of stay. Those planning problems are called Tourist
Trip Design Problems (TTDPs). Many other applications include the
team-orienteering sport game, bearing the original name of TOP,
the home fuel delivery problem with multiple vehicles (e.g., Chao
et al. [9]) and the athlete recruiting from high schools for a college
team (e.g., Butt and Cavalier [7]).

Many heuristics have been proposed to solve TOP, like the ones
in Archetti et al. [2], Souffriau et al. [27], Dang et al. [12] and Kim
et al. [20]. These approaches are able to construct solutions of good
quality in short computational times, but those solutions are not
necessarily optimal. In order to validate them and evaluate the
performance of the heuristic approaches, either optimal solutions
or upper bounds are required. For this reason, some researches
have been dedicated to elaborate exact solution methods for TOP.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2016.04.008
0305-0548/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: racha.el-hajj@hds.utc.fr (R. El-Hajj),

duc-cuong.dang@nottingham.ac.uk (D.-C. Dang),
aziz.moukrim@hds.utc.fr (A. Moukrim).

Computers & Operations Research 74 (2016) 21–30

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.04.008
http://dx.doi.org/10.1016/j.cor.2016.04.008
http://dx.doi.org/10.1016/j.cor.2016.04.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.04.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.04.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.04.008&domain=pdf
mailto:racha.el-hajj@hds.utc.fr
mailto:duc-cuong.dang@nottingham.ac.uk
mailto:aziz.moukrim@hds.utc.fr
http://dx.doi.org/10.1016/j.cor.2016.04.008
http://dx.doi.org/10.1016/j.cor.2016.04.008


Butt and Ryan [8] introduced a procedure based on the set cov-
ering formulation. A column generation algorithm was developed
to solve this problem. In Boussier et al. [6], the authors proposed a
branch-and-price (B–P) algorithm in which they used a dynamic
programming approach to solve the pricing problem. Their ap-
proach has the advantage of being easily adaptable to different
variants of the problem. Later, Poggi de Aragão et al. [25] in-
troduced a pseudo-polynomial linear model for TOP and proposed
a branch-cut-and-price (B–C–P) algorithm. New classes of in-
equalities, including min-cut and triangle clique, were added to
the model and the resulting formulation was solved using a col-
umn generation approach. Afterwards, Dang et al. [11] proposed a
branch-and-cut (B–C) algorithm based on a linear formulation and
features a new set of valid inequalities and dominance properties
in order to accelerate the solution process. Recently, Keshtkarana
et al. [19] proposed a Branch-and-Price algorithm with two re-
laxation stages (B–P–2R) and a Branch-and-Cut-and-Price (B–C–P)
approach to solve TOP, where a bounded bidirectional dynamic
programming algorithm with decremental state space relaxation
was used to solve the subproblems. These five methods were able
to prove the optimality for a large part of the standard benchmark
of TOP [9], however there is a large number of instances that are
still open until now. Furthermore, according to the recent studies
of Dang et al. [12] and Kim et al. [20], it appears that it is hardly
possible to improve the already-known solutions for the standard
benchmark of TOP using heuristics. These studies suggest that the
known heuristic solutions could be optimal but there is a lack of
variety of effective methods to prove their optimality.

Motivated by the above facts, in this paper we propose a new
exact algorithm to solve TOP. It is based on a linear formulation
with a polynomial number of binary variables. Our algorithmic
scheme is a cutting plane algorithm which exploits integer solu-
tions of successive models with the subtour elimination con-
straints being relaxed at first and then iteratively reinforced. Re-
cently, Pferschy and Staněk [24] demonstrated on the Travelling
Salesman Problem (TSP) that such a technique which was almost
forgotten could be made efficient now a day with the impressive
performance of modern solvers for Mixed-Integer Programming
(MIP), especially with a careful control over the reinforcing of the
subtour elimination. Our approach is similar but in addition to
subtour elimination, we also make use of other valid inequalities
and useful dominance properties to enhance the intermediate
models. The properties include breaking the symmetry and ex-
ploiting bounds or optimal solutions of smaller instances/models
with fewer number of vehicles, while the proposed valid in-
equalities are the clique cuts and the independent set cuts based
on the incompatibilities between customers and between arcs. In
addition, bounds on smaller restricted models are used to locate
mandatory customers and inaccessible customers/arcs. Some of
these cuts were introduced and tested in Dang et al. [11] yielding
some interesting results for TOP, this encourages us to implement
them in our cutting plane algorithm. We evaluated our algorithm
on the standard benchmark of TOP. The obtained results clearly
show the competitiveness of our algorithm. The algorithm is able
to prove the optimality for 12 instances that none of the previous
exact algorithms had been able to solve.

The remainder of the paper is organized as follows. A short
description of the problem with its mathematical formulation is
first given in Section 2, where the use of the generalized subtour
elimination constraints is also discussed. In Section 3, the set of
dominance properties, which includes symmetry breaking, re-
moval of irrelevant components, identification of mandatory cus-
tomers and boundaries on profits/numbers of customers, is pre-
sented. The graphs of incompatibilities between variables are also
described in this section, along with the clique cuts and the in-
dependent set cuts. In Section 4, all the techniques used to

generate these efficient cuts are detailed, and the pseudocode of
the main algorithmic scheme is given. Finally, the numerical re-
sults are discussed in Section 5, and some conclusions are drawn.

2. Problem formulation

TOP is modeled with a complete directed graph = ( )G V A,
where = { … } ∪ { }V n d a1, , , is the set of vertices representing the
customers and the depots, and = {( )| ∈ ≠ }A i j i j V i j, , , the set of
arcs linking the different vertices together. The departure and the
arrival depots for the vehicles are represented by the vertices d
and a. For convenience, we use three sets −V , Vd and Va to denote
respectively the sets of the customers only, of the customers with
the departure depot and of the customers with the arrival one. A
profit pi is associated for each vertex i and is considered zero for
the two depots ( = = )p p 0d a . Each arc ( ) ∈i j A, is associated with a
travel cost cij. Theses costs are assumed to be symmetric and to
satisfy the triangle inequality. All arcs incoming to the departure
depot and outgoing from the arrival one must not be considered
( = = ∞ ∀ ∈ )−c c i V,id ai . Let F represent the fleet of the m identical
vehicles available to visit customers. Each vehicle must start its
route from d, visit a certain number of customers and return to a
without exceeding its predefined travel cost limit L. Using these
definitions, we can formulate TOP with a linear Mixed Integer
Program (MIP) using a polynomial number of decision variables yir
and xijr. Variable yir is set to 1 if vehicle r has served client i and to
0 otherwise, while variable xijr takes the value 1 when vehicle r
uses arc (i,j) to serve customer j immediately after customer i and
0 otherwise.
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The objective function (1) maximizes the sum of collected
profits from the visited customers. Constraints (2) impose that
each customer must be visited at most once by one vehicle. Con-
straints (3) guarantee that each vehicle starts its path at vertex d
and ends it at vertex a, while constraints (4) ensure the con-
nectivity of each tour. Constraints (5) are used to impose the travel
length restriction, while constraints (6) eliminate all possible
subtours, i.e. cycles excluding the depots, from the solution. Fi-
nally, constraints (7) set the integral requirement on the variables.

Enumerating all constraints (6) yields a formulation with an
exponential number of constraints. In practice, these constraints
are first relaxed from the formulation, then only added to the
model whenever needed. The latter can be detected with the
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