
Parallel-identical-machine job-shop scheduling with different
stage-dependent buffering requirements

Shi Qiang Liu, Erhan Kozan n

School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia

a r t i c l e i n f o

Article history:
Received 6 March 2014
Received in revised form
12 November 2015
Accepted 25 April 2016
Available online 26 April 2016

Keywords:
Job shop scheduling
Parallel machine
Blocking
No-wait
Limited-buffer
Mixed integer programming
Heuristics

a b s t r a c t

The neglect of buffering requirements in a classical job shop scheduling system often results in in-
applicability in many complex real-world applications. To overcome this inapplicability, a new and more
generalised scheduling problem is proposed under different stage-dependent buffering requirements
and parallel use of identical-function machine units at each processing stage in job shop environments.
The problem is formulated as a mixed integer programming model that can be exactly solved by ILOG-
CPEX for small-size instances. Moreover, a hybrid metaheuristic algorithm embedded with a state-of-
the-art constructive algorithm is developed. The computational experiment shows that the proposed
metaheuristic can efficiently solve large-size instances. The result analysis indicates that the proposed
approach can provide better configuration of real-world scheduling systems. The proposed DBPMJSS
methodology has a potential to analyse, model and solve many industrial systems with the requirements
of buffering conditions, particularly for manufacturing, railway, healthcare and mining industries.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the literature, the Job Shop Scheduling (JSS) problem with
the makespan criterion is regarded as one of the most difficult
problems in combinatorial optimisation. An indication of its diffi-
culty is given by the fact that the famous 10-job 10-machine in-
stance formulated for the first time by Muth and Thompson [1]
was exactly solved by Carlier and Pinson [2], with a branch and
bound algorithm that required about 17895 seconds (about
5 hours) of computing time on a PRIME 2655 computer. In the past
30 years, a considerable number of algorithmic improvements
have been made and accumulated for the classical JSS problem.
With regard to a literature review of JSS, Jain and Meeran [3] had
provided a comprehensive overview of the progress, the techni-
ques and the researchers involved in the classical JSS problem in
1990. Because of its significance from a theoretic view, the classical
JSS problem is still an important research topic in the field of
Operations Research in the last two decades. Due to its complexity,
most of researchers recently focused on developing advanced
metaheuristic algorithms to solve JSS in a more efficient way. For
example, Zhang et al. [4] developed a Tabu Search (TS) meta-
heuristic with delicate neighbourhood structure and fast evalua-
tion strategies for JSS. Furthermore, Zhang et al. [5] developed a
hybrid metaheuristic by combining Simulated Annealing (SA) with

TS to obtain high-quality JSS solution within reasonable CPU times.
Udomsakdigool and Kachitvichyanukul [6] developed an Ant Col-
ony Optimisation (ACO) algorithm with several specific features
designed for JSS. Huang and Liao [7] developed a hybrid meta-
heuristic for JSS by combining ACO and TS mechanisms. Rego and
Duarte [8] developed an efficient algorithm for JSS by combining
the Shifting Bottleneck Procedure (SBP) algorithm with a Filter-
&-Fan search procedure. Hasan et al. [9] developed a memetic
algorithm (MA) with some priority rules for solving JSS. Lin et al.
[10] developed a new Particle Swarm Optimisation (PSO) algo-
rithm with a multi-type individual enhancement scheme for JSS.
Yin et al. [11] developed a discrete Artificial Bee Colony (DABC)
algorithm for JSS. Nasiri and Kianfar [12] developed an efficient TS
metaheuristic with six types of neighbourhood moves for JSS. Peng
et al. [13] presented an efficient TS metaheuristic with a path re-
linking procedure for JSS. Amirghasemi and Zamani [14] devel-
oped a fast genetic algorithm with the use of elite pool to obtain
the optimal solutions of some well-known benchmark JSS in-
stances within several seconds.

However, many realistic scheduling systems cannot be mod-
elled as the classical JSS problem, due to the additional features
such as the lack of storage units, zero-delaying-time restrictions,
parallel use of machine units, and special service/technological
requirements. In this case, the classical JSS problem should ex-
tended by considering these additional constraints. In recent years,
mainly motivated by practical issues, research interest has arisen
in the JSS problems with Blocking or No-Wait, called NWJSS or BJSS
respectively in the literature. For example, the NWJSS problem

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2016.04.023
0305-0548/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: sq.liu@qut.edu.au (S.Q. Liu), e.kozan@qut.edu.au (E. Kozan).

Computers & Operations Research 74 (2016) 31–41

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.04.023
http://dx.doi.org/10.1016/j.cor.2016.04.023
http://dx.doi.org/10.1016/j.cor.2016.04.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.04.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.04.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.04.023&domain=pdf
mailto:sq.liu@qut.edu.au
mailto:e.kozan@qut.edu.au
http://dx.doi.org/10.1016/j.cor.2016.04.023
http://dx.doi.org/10.1016/j.cor.2016.04.023


may arise in food industries, where the canning operation must
immediately follow the cooking operation to ensure freshness.
Another typical example is passenger train scheduling because
express passenger trains should traverse continuously in certain
track sections (e.g., tunnels) without any pauses [15–17]. In com-
parison, the BJSS problem permits a job either to leave im-
mediately after processing if possible or to remain there until the
downstreammachine on the routing is available. The BJSS problem
stems from a variety of industrial systems. For example, in a
chemical factory, partially-processed chemical products some-
times must be kept in the processing machines because of tem-
perature requirement or the non-existence of safe intermediary
storage space. Another practical application is freight train time-
tabling that should seriously consider the blocking (wait-while-
hold) constraints because a freight train sometimes has to remain
on a track section until the next section on the routing becomes
available [18]. Compared to the substantial body of knowledge in
the classical JSS problem, the NWJSS and BJSS problems received
surprisingly little attention from either a theoretical or computa-
tional perspective. An initial survey for this research area was gi-
ven by Hall and Sriskandarajah [19]. Regarding the solution tech-
niques, Mascis and Pacciarelli [20] studied the BJSS and NWJSS
problems by means of alternative graph, which is an extension of
the classical disjunctive graph. Furthermore, Meloni et al. [21]
presented a rollout metaheuristic for the BJSS and NWJSS pro-
blems. The rollout metaheuristic corresponds to a constructive
procedure that iteratively extends a partial schedule, represented
by a partial selection of alternative arcs, to a complete schedule.
Mati et al. [22] investigated a multi-resource BJSS problem, in
which every operation simultaneously requires several resources
such that deadlocks can be avoided. They extended a classical
geometric approach to solve the two-job case. Brucker and
Kampmeyer [23] proposed a tabu search (TS) metaheuristic algo-
rithm for a cyclic BJSS problem. In their TS, the recovering proce-
dures were developed to construct feasible neighbouring solutions
in TS moves. Gröflin and Klinkert [24] devised a TS metaheuristic
algorithm based on an extended graph model to solve BJSS effi-
ciently. Samarghandi and ElMekkawy [25] developed a genetic
algorithm to solve a two-machine NWJSS problem with a single
sever and setup times. Pranzo and Pacciarelli [26] developed an
iterated greedy algorithm to solve to two variants of BJSS with
swap allowed and without swap allowed.

Another extension of the classical JSS problem is consideration of
the flexibility of selecting alternative routes among machines in a job
shop environment so that different processing times of an operation
are optional in terms of machine (stage) assignment. In the literature,
this problem type is called the Flexible Job Shop Scheduling (FJSS)
problem and stated as follows: In an FJSS environment, it is assumed
that there are a given set of jobs = { … … }J J J J J, , , , ,j n1 2 and a given set
of machines = { … }M M M M, , , m1 2 . A job Jj is formed by a given se-
quence of operations − −… −… − σO O O Oj j ij j1 2 . Each operation (Oij) can
be executed on any one machine from a specified subset of machines

⊆M Mij . Thus, the flexibility for operation Oij exists if the number of
machines in subset Mij is multiple. However, such a flexibility is still
limited as the specification of Mij is operation-dependent. The idea of
FJSS was first introduced by Brucker and Schlie [27] has become an
entity of intensive research due to its usefulness in real-world pro-
duction environment. Because of strong NP-hardness, most re-
searchers were interested in applying metaheuristic algorithms to
solve FJSS, as presented in the below. Brandimarte [28] proposed a
two-level hierarchical approach for FJSS by tackling machine as-
signment and operation scheduling separately. Pezzella et al. [29]
presented an efficient genetic algorithm with different selection and
reproduction mechanisms for FJSS. Gao et al. [30] used the special
chromosome structure and advanced operators to develop a hybrid

genetic and variable neighbourhood descent algorithm for FJSS. Xing
et al. [31] developed a Knowledge-Based ACO algorithm for FJSS by
providing an effective integration between ACO and knowledge
model. Bozejko et al. [32] developed a double-level parallel meta-
heuristic approach with machine selection module and operation
scheduling module for solving FJSS. Zhang et al. [33] solved FJSS by
developing an effective genetic algorithm based on an improved
chromosome representation and diverse crossover and mutation
operators. Yuan and Xu [34] developed a hybrid evolutionary-based
memetic algorithm with harmony search and large neighbourhood
search to solve large-scale FJSS instances. Türkyılmaz and Bulkan [35]
developed a hybrid genetic algorithm with variable neighbourhood
search for FJSS with the objective of minimising total tardiness.
González et al. [36] developed a scatter search metaheuristic algo-
rithm with effective neighbourhood structure to solve FJSS. Jia and
Hu [37] solved a multi-objective FJSS problem by a path-relinking TS
algorithm with the mechanism of back-jump tracking.

On the boundary of the job shop environment with No-Wait/
Blocking, the JSS with Limited-Buffer (LBJSS) problem creates a
relatively new direction of research but receives little attention
[38]. However, the limited-buffer conditions often arise in most
real-world production environments. For example, Toba [39] in-
dicated from an application in semi-conductor industry that
“Buffers accommodate lots (products) waiting at processing
equipment units and supply the lots to the equipment units when
they are ready to process them. The buffers alleviate abrupt
throughput changes in production equipment by buffering several
lots among contiguous process steps and prevent starvation of
equipment units. As a result, the buffers have a major effect on the
throughput performance of fabrication lines”. Brucker and Kamp-
meyer [23] indicated that a feasible solution may be represented
by the machine sequences of the jobs but the buffers should be
incorporated in the solution representation. Brucker et al. [40]
investigated the LBJSS problem by classifying the buffering re-
quirements into the following three types.

i) job-dependent buffering: the buffering requirement of a job at
a stage only depends on the job's characteristics;

ii) stage-dependent input buffering: a storage unit may store a
job just before its processing at a stage; and

iii) stage-dependent output buffering: a storage unit may store a
job just after its processing at a stage.

In this paper, the definition of the buffering requirement be-
longs to the above third type “stage-dependent output buffering”. In
addition to storage units, machine units at each stage in DBPMJSS
have the identical operating function and are also stage-depen-
dent. This is fundamentally distinct from FJSS in which a given
subset of machines ⊆M Mij (actually equivalent to stages in
DBPMJSS) for one operation Oij is operation-dependent. Moreover,
the diffidence between FJSS and DBPMJSS is explained below by a
benchmark FJSS instance called MK01 (see [28–30]).

1.1. MK01 FJSS data

10 6 2
6 2 1 5 3 4 3 5 3 3 5 2 1 2 3 4 6 2 3 6 5 2 6 1 11 3 1 3 6 6 3 6 4 3
5 1 2 6 1 3 1 1 1 2 2 2 6 4 6 3 6 5 2 6 1 1
5 1 2 6 2 3 4 6 2 3 6 5 2 6 1 1 3 3 4 2 6 6 6 2 1 1 5 5
5 3 6 5 2 6 1 1 1 2 6 1 3 1 3 5 3 3 5 2 1 2 3 4 6 2
6 3 5 3 3 5 2 1 3 6 5 2 6 11 1 2 6 2 1 5 3 4 2 2 6 4 6 3 3 4 2 6 6 6
6 2 3 4 6 2 1 1 2 3 3 4 2 6 6 6 1 2 6 3 6 5 2 6 1 1 2 1 3 4 2
5 1 6 1 2 1 3 4 2 3 3 4 2 6 6 6 3 2 6 5 1 1 6 1 3 1
5 2 3 4 6 2 3 3 4 2 6 6 6 3 6 5 2 6 1 1 1 2 6 2 2 6 4 6
6 1 6 1 2 1 1 5 5 3 6 6 3 6 4 3 1 1 2 3 3 4 2 6 6 6 2 2 6 4 6
6 2 3 4 6 2 3 3 4 2 6 6 6 3 5 3 3 5 2 1 1 6 1 2 2 6 4 6 2 1 3 4 2

S.Q. Liu, E. Kozan / Computers & Operations Research 74 (2016) 31–4132



Download English Version:

https://daneshyari.com/en/article/6892766

Download Persian Version:

https://daneshyari.com/article/6892766

Daneshyari.com

https://daneshyari.com/en/article/6892766
https://daneshyari.com/article/6892766
https://daneshyari.com

