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a b s t r a c t

In this paper, we present solution algorithms for synchronous flow shop problems with two dominating
machines. In such an environment, jobs have to be moved from one machine to the next by an unpaced
synchronous transportation system, which implies that the processing is organized in synchronized
cycles. This means that in each cycle the current jobs start at the same time on the corresponding
machines and after processing have to wait until the last job is finished. Afterwards, all jobs are moved to
the next machine simultaneously. Motivated by a practical application, we investigate the special case of
two dominating machines where the processing times of all jobs on these two machines are at least as
large as the processing times of all jobs on the other machines and hence always determine the cycle
times. After formulating the considered problem as a special vehicle routing problem, we propose mixed
integer linear programming formulations and a tabu search algorithm. Finally, we present computational
results for randomly generated data and show the efficiency of the approaches.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A flow shop with synchronous movement (“synchronous flow
shop” for short) is a variant of a non-preemptive permutation flow
shop where transfers of jobs from one machine to the next take
place at the same time. Processing of a job on the next machine
may only start after the current jobs on all machines are finished,
i.e., after the maximal processing time of the jobs that are cur-
rently processed. If the processing time of a job on a certain ma-
chine is smaller than this maximum, the corresponding machine is
idle until the job may be transferred to the next machine. In
contrast, in a classical flow shop the transfer of jobs is asynchro-
nous: Jobs may be transferred to the next machine as soon as their
processing on the current machine is completed and processing on
the next machine immediately starts as soon as this machine is
available.

Synchronous flow shops were first discussed by Kouvelis and
Karabati [14]. The authors present a mixed integer programming
formulation and discuss approaches for a cyclic production en-
vironment in which a set of jobs is produced repeatedly. Further,
they proved that the synchronous flow shop problem is

-hard for an arbitrary number of machines. This result was

strengthened by Waldherr and Knust [23] showing that the
synchronous flow shop problem is already -hard for three
machines. Soylu et al. [17] present a branch-and-bound ap-
proach as well as several heuristics to minimize the makespan
in synchronous flow shops. In Huang [10], rotating production
units with synchronous movement and a loading/unloading (L/
U) station are considered. In this framework, a job enters the
production unit at the L/U station and is then processed on all
machines before returning to the L/U station where it is un-
loaded. A polynomial algorithm to minimize the makespan for a
production unit with two machines and constant product-in-
dependent removal times is presented. Furthermore, dynamic
programming approaches for the case with non-constant re-
moval times and two or three machines are proposed.

Our work is further motivated by a practical application studied
in Waldherr and Knust [22]. There, in the production process of
shelf-boards at a kitchen manufacturer circular production units
with eight machines incorporating synchronous movement are
used. For these production units the concept of machine dom-
inance is important. A subset of machines is called dominating if
the processing times of all jobs on these machine are at least as
large as the processing times of all jobs on the other machines. In
other words, this means that the dominating machines dictate the
pace of the flow shop with synchronous movement. In the prac-
tical application from [22] two of the eight machines are dom-
inating. Classical flow shop problems with dominating machines
are well studied in literature. For example, efficiently solvable
cases can be found in Monma and Rinnooy Kan [16], Ho and Gupta
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[9], Xiang et al. [25]. In Wang and Xia [24] dominating machines in
no-wait flow shops are investigated. Complexity results for syn-
chronous flow shop problems with dominating machines can be
found in [23].

In this paper, we show that synchronous flow shop problems
with two dominating machines are closely related to vehicle
routing problems with unit demands of the customers and special
arc costs. For a general survey on vehicle problems see Toth and
Vigo [18], problems with unit demands were, for example, con-
sidered in Campos et al. [2] and Angel et al. [1]. The special arc
costs in our application are the same as those considered by Gil-
more and Gomory [8] for the traveling salesman problem. This
polynomially solvable case of the TSP has received a lot of atten-
tion in the literature, cf. Chandrasekaran [3], Kabadi and Baki [12],
Kabadi [11], Kao and Sanghi [13], and Vairaktarakis [19,20].

The remainder of this paper is organized as follows. After giv-
ing a formal description of the considered problem in Section 2, in
Section 3 we show how the problem can be formulated as a special
vehicle routing problem. In Section 4 we propose different mixed
integer linear programming formulations, in Section 5 a tabu
search algorithm is described. Computational results can be found
in Section 6. Finally, conclusions are presented in Section 7.

2. Problem formulation

In this section, we describe the studied problem more formally
and introduce the used notations. We consider a permutation flow
shop with m machines …M M, , m1 and n jobs = { … }N n1, , where
job j consists of m operations → → … →O O Oj j mj1 2 . Operation Oij

has to be processed without preemption on machineMi for pij time
units. In a feasible schedule each machine processes at most one
operation at any time, each job is processed on at most one ma-
chine at any time, and the jobs are processed in the predefined
order.

The processing is organized in synchronized cycles since jobs
have to be moved from one machine to the next by an unpaced
synchronous transportation system. This means that in a cycle all
current jobs start at the same time on the corresponding ma-
chines. Then, all jobs are processed and have to wait until the last
one is finished. Afterwards, all jobs are moved to the next machine
simultaneously. The job processed on the last machine Mm leaves
the system, a new job (if available) is put on the first machine M1.
As a consequence, the processing time of a cycle is determined by
the maximum processing time of the operations contained in it.
Furthermore, only permutation schedules are feasible, i.e., the jobs
have to be processed in the same order on all machines.

Let Cj be the completion time of job j, i.e., the time where j has
been processed on all machines and leaves the system. We assume
that a job can only be accessed after the whole cycle has been
completed, i.e., the job has to wait until all jobs on the other
machines in the corresponding cycle are finished. Thus, the com-
pletion time Cj of a job j is defined as the time when the corre-
sponding cycle of its last operation Omj is finished (i.e., the next
cycle starts). The goal is to find a sequence of the jobs such that the
makespan =C Cmax jmax is minimized. With each sequence a
corresponding (left-shifted) schedule is associated in which each
operation starts as early as possible (cf. Waldherr and Knust [23]).

As an example consider a flow shop with n¼7 jobs and m¼5
machines. In Fig. 1, a feasible schedule corresponding to the se-
quence π = ( )1, 2, 3, 4, 5, 6, 7 and the completion times Cj are
shown. The schedule consists of + −n m 1 cycles, which are di-
vided into a starting phase ( −m 1 cycles, until jobs are present on
each machine), a standard phase ( − +n m 1 cycles, as described
above), and a final phase ( −m 1 cycles, no more jobs are available
for M1).

For a given sequence π the makespan can be calculated as
follows:
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Motivated by the practical application, we assume that the pro-
cessing times of the cycles are only determined by a subset of so-
called dominating machines, i.e., these machines dictate the pace
of the synchronous movement. A subset ⊂ { … }D m1, , is called
dominating if the processing times on the other machines are al-
ways not larger than those on the dominating machines, i.e.

≥
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For example, in Fig. 1 the two machines M1 and M3 are
dominating.

Additionally, we assume that on the non-dominating machines
the jobs have job-independent processing times =p pij i (which are
all smaller than the processing times on the dominating ma-
chines). This assumption is motivated by the fact that the non-
dominating machines resemble work processes like insertion or
removal of work pieces that have the same processing time re-
gardless of the actual job. In this case, the required time in cycles
where no job is processed on a dominating machine is constant
and independent of the job sequence. Thus, we can simply ignore
these cycles and add a corresponding constant to all completion
times. Since this constant is sequence-independent and adding a
constant to the makespan objective does not change an optimal
sequence, in this situation we may even assume that all processing
times on the non-dominating machines are equal to zero (cf.
Waldherr and Knust [23]).

In [23] it was also shown that in the case of arbitrary processing
times on the non-dominating machines it is possible to iterate
over all potential sequences of the first −i 11 and the last −m i2
jobs and then to solve a reduced problem with job-independent
processing times for the remaining non-fixed jobs in between.
Therefore, the algorithms of this paper can also be extended to
cases where the processing times on the dominating machines are
not job-independent. Since there are ( )− + −nm i i 12 1 possibilities to
fix the job sequences in the first −i 11 and the last −m i2 cycles,
this additional iteration can be done in polynomial time if the
number of machines m is fixed (i.e., not part of the input).

According to [23] our problem can be classified as
| ( ) = |F synmv dom i i p p C, , , ij

ndom
i1 2 max or equivalently |F synmv,

( ) = |dom i i p C, , 0ij
ndom

1 2 max where i1,i2 are the indices of the two
dominating machines. In [23] it was shown that problem

| ( + ) = |F synmv dom i i p p C, , 1 , ij
ndom

i max with two adjacent dominat-
ing machines is equivalent to the two-machine no-wait flow shop
problem | − |F no wait C2 max where the two machines in the no-wait
problem correspond to the two dominating machines Mi and +Mi 1

of the synchronous flow shop. This problem can be solved in

Fig. 1. Feasible synchronous flow shop schedule for the sequence π = ( )1, 2, 3, 4, 5, 6, 7
and m¼5 machines.
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