Computers & Operations Research 74 (2016) 165-174

journal homepage: www.elsevier.com/locate/caor

Contents lists available at ScienceDirect

Computers & Operations Research

CoOmMpPULErs
& operations
research

New simple constructive heuristic algorithms for minimizing total

@ CrossMark

flow-time in the permutation flowshop scheduling problem

Hamid Abedinnia, Christoph H. Glock*, Andreas Brill

Institute of Production and Supply Chain Management, Department of Law and Economics, Technische Universitdt Darmstadt, Hochschulstr. 1, 64289

Darmstadt, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 7 February 2015
Received in revised form

19 March 2016

Accepted 8 April 2016
Available online 13 April 2016

Keywords:

Flowshop scheduling problem
Permutation flowshop

Total flow-time

Heuristics

This paper develops a set of new simple constructive heuristic algorithms to minimize total flow-time for
an n-jobs x m-machines permutation flowshop scheduling problem. We first propose a new iterative
algorithm based on the best existing simple heuristic algorithm, and then integrate new indicator
variables for weighting jobs into this algorithm. We also propose new decision criteria to select the best
partial sequence in each iteration of our algorithm. A comprehensive numerical experiment reveals that
our modifications and extensions improve the effectiveness of the best existing simple heuristic without
affecting its computational efficiency.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A flowshop production system is commonly defined as a pro-
duction system in which a set of n jobs undergoes a series of
operations in the same order [23]. Determining optimal job se-
quences for flowshop scheduling problems can be based on var-
ious objectives; minimizing makespan and minimizing total flow-
time have, however, most often been considered as objectives for
flowshop scheduling problems in the past. The first objective re-
fers to the minimization of the last job's completion time, while
the second one aims on minimizing the total in-process time,
which reduces work-in-progress inventory [6]. For makespan
minimization, problems with more than two machines have been
shown to be strongly NP hard [23]; this is even the case for Per-
mutation Flowshop Scheduling Problems, i.e. for flowshop sche-
duling problems with the same job order on all machines. Garey
et al. [11] showed that the problem of minimizing total flow-time
with more than one machine belongs to the category of NP com-
plete problems. Accordingly, for large-size problems, heuristic
procedures have to be used to find solutions in reasonable com-
putational time. A comprehensive review of research on flowshop
scheduling that appeared during the last 50 years is the one of
Gupta and Stafford [14]. A review of scheduling problems that aim
on minimizing makespan can be found in Ruiz and Maroto [28]

* Corresponding author.
E-mail addresses: hamid@im.wi.tu-darmstadt.de (H. Abedinnia),
glock@bwl.tu-darmstadt.de (C.H. Glock), Andreas.brill@gmx.com (A. Brill).

http://dx.doi.org/10.1016/j.cor.2016.04.007
0305-0548/© 2016 Elsevier Ltd. All rights reserved.

and Gupta et al. [13]. The Permutation Flowshop Scheduling Pro-
blem with the objective of flow-time minimization was reviewed
by Pan and Ruiz [22] and Framinan et al. [8], where the latter also
reviewed works that consider makespan minimization. Mutlu and
Yagmahan [18] recently reviewed multi-objective flowshop sche-
duling problems.

Framinan et al. [10] provided a framework to categorize heur-
istic algorithms for the Permutation Flowshop Scheduling Problem
(PFSP) according to their structure. This framework distinguished
between the phases of (a) index development, (b) solution con-
struction, and (c) solution improvement. Framinan et al. [9] cate-
gorized existing heuristics, which can address one or more of
these phases, into two classes: simple and composite heuristics.
An algorithm was categorized as a simple heuristic if it does not
include another heuristic. Composite heuristics are heuristics that
contain at least one simple heuristic for conducting one or more of
the three above-mentioned phases. Pan and Ruiz [22] showed that
composite heuristics outperform simple heuristics in minimizing
flow-time. Yet, as simple heuristics are the basic building blocks of
composite heuristics, improving their performance is still of in-
terest for the research community, as this improvement can boost
the performance of composite heuristics as well. The aim of this
paper is to propose a set of new simple heuristics to improve the
performance of the best existing simple heuristic algorithm for
minimizing total flow-time in the PFSP.

A popular simple heuristic for minimizing makespan in the
general PFSP was presented by Nawaz et al. [19] (we refer to this
heuristic as NEH in the following), which outperformed other


www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.04.007
http://dx.doi.org/10.1016/j.cor.2016.04.007
http://dx.doi.org/10.1016/j.cor.2016.04.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.04.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.04.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.04.007&domain=pdf
mailto:hamid@im.wi.tu-darmstadt.de
mailto:glock@bwl.tu-darmstadt.de
mailto:Andreas.brill@gmx.com
http://dx.doi.org/10.1016/j.cor.2016.04.007
http://dx.doi.org/10.1016/j.cor.2016.04.007

166 H. Abedinnia et al. / Computers & Operations Research 74 (2016) 165-174

algorithms developed earlier, such as the heuristics of Palmer [20],
Gupta [12], or Campbell et al. [2]. Despite its good performance for
makespan-related PFSPs, another advantage of NEH is that it leads
to good solutions for other objectives as well, such as minimizing
total flow-time (as was shown, for example, by Allahverdi and
Aldowaisan [1]). The NEH heuristic consists of two phases, namely
(I) the sorting (prioritizing) phase and (II) the insertion phase. In
the sorting phase, jobs are sorted in descending order of their total
processing time. This sorted list is used in the insertion phase to
determine the sequence in which jobs are added to an existing
partial sequence. For an n-job PFSP, the insertion phase consists of
n iterations. In step k (1< k < n) of the insertion phase, the kth job
on the sorted list is successively assigned to the k possible slots in
the current partial sequence that was obtained in the previous
iteration, which consists of k — 1 jobs. The partial sequence that
leads to the best value for the objective function (minimum partial
makespan) is used as the current k-jobs partial sequence for the
next iteration.

Since 1983, many researchers have tried to improve NEH for
different objective functions by modifying either its sorting or its
insertion phase. One example is the work of Framinan et al. [7],
which tried to improve the performance of NEH for three objec-
tives (i.e., makespan, idle time and total flow-time minimization)
by applying 177 new ordering policies to the sorting phase of NEH.
These policies are combinations of different indicator values and
sorting criteria. Most extensions of NEH are more effective than
the original version (i.e., they lead to better solutions), but they are
usually less efficient (i.e., they are usually more complex and re-
quire more computational time than the original NEH).

The relatively high efficiency of NEH is primarily due to the
idea of keeping an established partial sequence of a set of jobs
unchanged from one iteration until the algorithm terminates. This
idea, however, also restricts the effectiveness of NEH, as it does not
search for potentially better local solutions once a partial sequence
has been established. One option to improve the insertion phase of
NEH is to optimize partial sequences by testing alternative posi-
tions for jobs at the end of each iteration, i.e. to evaluate the
neighborhood of each partial sequence. A similar idea was pre-
sented by Rajendran [24], who optimized partial sequences by
exchanging adjacent jobs pairwise with the objective to minimize
total flow-time. Framinan and Leisten [6] combined this idea with
NEH and performed pairwise exchanges at the end of each itera-
tion to improve partial sequences. The authors showed that their
algorithm (to which we refer as FL hereafter) outperformed other
constructive algorithms for the total flow-time criterion. Framinan
et al. [9] evaluated different heuristic algorithms for the PFSP and
concluded that the FL heuristic led to better solutions for the total
flow-time criterion. Laha and Sarin [17] extended FL by allowing
all jobs assigned to a partial sequence to change their respective
position by checking all other k — 1 slots at the end of each
iteration. They showed that their algorithm (to which we refer as
LS in the following) leads to a better performance, in terms of the
quality of the solutions, and only a small loss in efficiency as
compared to the FL heuristic. Pan and Ruiz [22] reviewed the most
promising constructive heuristics and indicated that LS is the best
existing simple heuristic to minimize total flow-time in general
PFSPs in terms of the quality of the results. Since LS is computa-
tionally complex, the authors developed some new composite
heuristics that outperform LS and at the same time consume about
one order of magnitude less CPU time. Recently, Fernandez-Viagas
and Framinan [5] proposed a set of new constructive heuristics
(we refer to them as FF heuristics in the following) and compared
them with some of the heuristics considered in Pan and Ruiz [22].
Although some of their composite algorithms showed a better
performance than the ones proposed in Pan and Ruiz [22], their
proposed simple heuristics (all pure FF heuristics, i.e. FF(1)-FF(n))

are outperformed by LS.

As mentioned above, having promising composite heuristics
does not render efforts to improve simple heuristics worthless.
Better simple heuristics may open the gate for the development of
even better composite heuristics. Based on LS, this paper proposes
several new simple heuristics for the PFSP. Numerical experiments
illustrate that our modifications lead to a significant improvement
in terms of the quality of the solutions without affecting the
computational efficiency as compared to the best existing simple
heuristic.

The remaining sections of this paper are organized as follows.
Section 2 outlines the heuristic of Laha and Sarin [17] and possible
modifications for its extensions. Section 3 describes the proposed
heuristics in detail. A comprehensive comparison of the proposed
heuristics and LS, together with a detailed evaluation of the effect
of the proposed modifications on NEH and LS, are given in Section
4, and Section 5 concludes the paper.

2. The heuristic of Laha and Sarin and its modifications

Both the FL and LS heuristics optimize partial sequences at the
end of each iteration of NEH's insertion phase. This paper focuses
on improving the LS heuristic, which outperforms all other exist-
ing simple heuristics for optimizing total flow-time in a permu-
tation flowshop manufacturing system [22]. The pseudocode of LS
is the following:

Step 1: P= Z?Llp,»j, i=1,2, ..., n,where P; is the indicator value
of job i and py is the processing time of job i on machine j.

Step 2: Sort the jobs in an ascending order of their indicator
values.

Step 3: Select jobs k=1 and k =2 and keep the partial se-
quence (i.e. 1 — 2 or 2 — 1) that results in a shorter total flow-time
as the current partial sequence.

Step 4: For k = 3, ..., n, repeat the following:

4.1 Insert the kth job in all k possible slots in the partial sequence
obtained in the last iteration, which consists of k — 1 jobs.

4.2 Select the best k-job partial sequence that results in the
shortest total flow-time as the current partial sequence.

43 Fori=1, ..., k, remove job i from the current partial sequence
and insert it into the k — 1 positions of the remaining partial
sequence. Calculate the corresponding total flow-time for all
new combinations.

4.4 1f the best of the new k(k — 1) k-job partial sequences generated
in Step 4.3 is better than the current partial sequence, replace it by
the best partial sequence obtained in Step 4.3. Set k = k + 1.

It is worth noting that the first three steps of LS are almost
identical to those of the original NEH heuristic. The only difference
is that in LS, unlike in the original NEH, the jobs are sorted in
ascending order of their weights (Step 2). Framinan et al. [8]
showed that minimizing total flow-time in a PFSP by using a
modified version of the NEH heuristic, with jobs sorted in an as-
cending order of their total processing times, performs better than
the original NEH. It is also worth noting that partial sequences are
optimized starting with Step 4 of LS.

As LS is based on NEH, we have the same options for improving
LS as for extending the NEH heuristic. Framinan et al. [7] named
six attributes of the NEH heuristic that offer rooms for extensions:

(1) Consider different objective functions, such as makespan, total
flow-time or idle-time minimization.

(2) Employ different indicator values in Step 1 (e.g. as by Frami-
nan et al. [7]).



Download English Version:

https://daneshyari.com/en/article/6892786

Download Persian Version:

https://daneshyari.com/article/6892786

Daneshyari.com


https://daneshyari.com/en/article/6892786
https://daneshyari.com/article/6892786
https://daneshyari.com/

