Computers & Operations Research 74 (2016) 175-186

Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor

Contents lists available at ScienceDirect

CoOmMpPULErs
& operations
research

An order scheduling problem with position-based learning effect

@ CrossMark

Jianyou Xu?, Chin-Chia Wu®, Yunqiang Yin ¢, Chuanli Zhao ¢, Yi-Tang Chiou®,

Win-Chin Lin ™*

2 College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

b Department of Statistics, Feng Chia University, Taichung 40724, Taiwan

¢ Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China

d School of Mathematics and Systems Science, Shenyang Normal University, Shenyang, Liaoning 110034, China

ARTICLE INFO

ABSTRACT

Article history:

Received 29 July 2015
Received in revised form

10 March 2016

Accepted 24 April 2016
Available online 3 May 2016

Keywords:

Order scheduling

Simulated annealing

Particle swarm optimization method
Tardiness

Learning effect

The order scheduling problem is receiving increasing attention in the relatively new but creative area of
scheduling research. In order scheduling, several orders are processed on multiple machines, and each
order comprises multiple components. The order completion time is defined as the time at which all
components in an order are completed. In previous studies, the processing times of all components were
fixed in order scheduling problems. This is unreasonable because a steady decline in processing time
usually occurs when the same task is performed repeatedly in practical situations. Therefore, we propose
a multiple-machine order scheduling problem with a learning effect to minimize the total tardiness. We
develop a branch-and-bound algorithm incorporating certain dominance rules and three lower bounds
for obtaining the optimal solution. Subsequently, we propose simulated annealing, particle swarm op-
timization, and order-scheduling MDD algorithms for obtaining a near-optimal solution. In addition, the
experimental results of all proposed algorithms are provided.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In many manufacturing and service environments, a product
development team independently develops modules for several
products, and the product design is deemed completed once all
modules have been designed; this situation is termed “customer
order scheduling.” Ahmadi et al. [1] investigated one such example
in the manufacturing industry: a manufacturer producing semi-
finished lenses and competing globally. The lenses are sold to
professional lens finishing labs and large optometry stores. This
manufacturer produces three types of plastic lenses: CR-39, poly-
carbonate, and spectralite. CR-39 is the industry standard for
plastic lenses. The polycarbonate lenses are fabricated from higher
index materials compared with CR-39 and thus are more durable.
The spectralite lenses are composed of high index materials but do
not require curing as much as polycarbonate lenses do. Because of
the processing requirements, these lenses are produced on dedi-
cated production lines according to confirmed customer orders;
each order comprises different quantities of the three lens types.
After completion on the different production lines, the lenses are
sent to the packaging area separately and are shipped to the cus-
tomer as a single shipment.

* Corresponding author.
E-mail address: linwc@fcu.edu.tw (W.-C. Lin).

http://dx.doi.org/10.1016/j.cor.2016.04.021
0305-0548/© 2016 Elsevier Ltd. All rights reserved.

A common assumption in conventional scheduling models is
that job processing times are fixed, known integer numbers
[25,29]. This is untrue in applications where production time can
be shortened if the production can be deferred, because the effi-
ciency of the production facility, particularly for high-technology
manufacturing processes. Moreover, Biskup [3] claimed that
learning primarily occurs because of repeated processing time-
independent operations, such as assembling, controlling, and op-
erating machines and processing data.

Furthermore Biskup [3], claimed that the learning effect in
scheduling may occur in a company where similar jobs are pro-
duced on one machine or on parallel and identical machines for
several customers. Jobs usually have varying normal processing
times because of varying order quantities and slightly differing
product components. On the basis of this observation, Biskup [3]
introduced a position-based learning model in which a job is
processed in its normal processing time if the job is scheduled
first; the processing times of the following jobs are shorter than
their normal processing times because of the learning effect.
However, this learning factor is not considered in customer order
scheduling. Therefore, in this study, we investigated a multiple-
machine order scheduling problem with a job position-based
learning function to minimize the total tardiness of all given jobs.

Many studies have investigated order scheduling problems to
minimize the total weighted completion time. Sung and Yoon [30]
demonstrated that this problem is nondeterministic polynomial-time

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.04.021
http://dx.doi.org/10.1016/j.cor.2016.04.021
http://dx.doi.org/10.1016/j.cor.2016.04.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.04.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.04.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.04.021&domain=pdf
mailto:linwc@fcu.edu.tw
http://dx.doi.org/10.1016/j.cor.2016.04.021
http://dx.doi.org/10.1016/j.cor.2016.04.021

176 J. Xu et al. / Computers & Operations Research 74 (2016) 175-186

(NP) hard. Wang and Cheng [36] and Leung et al. [16,19,21] have
proposed heuristic algorithms for obtaining near-optimal solutions,
and Yoon and Sung [52] developed a branch-and-bound algorithm for
obtaining the optimal solution. Ahmadi et al. [1] too showed that the
order scheduling problem to minimize the total completion time is
NP-hard and developed heuristic algorithms for it. Considering the
due dates as criterion, Leung et al. [17] addressed the order scheduling
problem to minimize the maximum lateness (i.e., the number of tardy
orders) and established heuristic algorithms. Lee [15] considered the
order scheduling problem to minimize total tardiness. Additional in-
formation on order scheduling problems on identical machines in
parallel settings can be obtained from [46,18,20-22].

Biskup [3] and Cheng and Wang [5] were pioneers who in-
troduced learning to scheduling. Koulamas and Kyparisis [13] and
Kuo and Yang [12] modified Biskup’s [3] learning model for in-
creased practicability; the learning occurs not because of repeated
processing time-independent operations, such as setups, but be-
cause of repeated production activity. The learning effect has since
continued to receive much attention. For some relevant studies,
we refer the readers to [4,6,8,14,23,24,31-35,37,39-45,49,51]. In
addition, relevant studies on time-dependent processing are
available in [47,50], for two special issues, [48], for a deterioration
model in which the actual processing time of a job depends not
only on the starting time of the job but also on its scheduled po-
sition, and Wang and Wang [35,37| and Wang and Zhang [38], for
flowshop scheduling with a learning effect.

Only Lee [15] considered total tardiness as the objective mea-
sure for order scheduling, but without considering the learning
effect. Therefore, this study focused on minimizing the total tar-
diness of the order scheduling problem with a learning effect. The
remainder of this paper is organized as follows. The notation and
problem formulation are presented in Section 2. In Section 3,
several dominant lemmas and three lower bounds are derived and
used in the branch-and-bound algorithm to accelerate the search
efficiency for obtaining the optimal solution. Section 4 describes
the SA, particle swarm optimization (PSO), and order-scheduling
MDD heuristics. Section 5 describes the details of the branch-and-
bound algorithm. Section 6 reports the simulation results of the
proposed methods. Conclusions are presented in Section 7.

2. Problem statement

First, we define the notations used in the paper.

n: number of orders;

m: number of machines;

M;: machine i, i=1, 2,..., m;

S,5': schedules of n orders;

#,n': partial sequences of n orders;

Py.: processing time for order i on machine k, k=1, 2, ...,m;

d;: due date for order i, i=1, 2, ..., n;

a: learning effect, where a<0;

Gi(S) and G;(S): completion times of orders i and j in S, and G;(S)
and C;(S’): completion times of orders j and i in §;

[]: position of jobs in a sequence;

Ti(S) and T;(S): tardiness of orders i and j in S;

T;(S") and T;(S): tardiness of orders j and i in S, where

T;(S)=max{0,G(S)—d;}.

The problem is formally formulated as follows. Consider n or-
ders from n different clients, and each order comprises m com-
ponents. Consider a facility with m different machines arranged in
parallel. Each machine can produce one particular component,
that is, each component can be processed on one dedicated ma-
chine. All orders are ready at time zero. Assume that no

assembling times are involved and that the orders are processed
without interruptions or preemptions. Let p; denote the proces-
sing time of the kth component of order i to be processed on
machine k, and d; denote the due date of order i. Because of the
learning effect, we assume the actual processing time of the kth
component of order i to be processed on machine k in the rth
position in a given sequence, that is, py,=p;r® where a is a
learning effect with a<0, and [r] denotes job i to be scheduled in
the rth position in a given schedule. This study aimed to obtain an
optimal sequence to minimize the total tardiness of all given n
orders. The problem without learning effect was shown to be NP-
hard in the strong sense by [15], and therefore our problem is NP-
hard in the strong sense. A branch-and-bound algorithm in-
corporating certain dominance rules and three lower bounds for
the optimal solution is developed in the following sections.

3. Dominances and lower bounds

Let S=(z,1i,j,) and S'=(z,], i, z’) denote two schedules in
which z and =’ are partial sequences. To show that S dominates S,
it suffices to show that T;(S)+T;(S)<T;(S)+T;(S") and G(S) < G(S).
Let r—1 be the number of orders in z, t, be the completion time of
the last order in partial schedule = on machine k, k=1,2, ...,m, u
(resp., x) denote the machine index which finishes lastly when the
orderi(orj)in S, and v (resp., y) denote the machine index which
finishes lastly when the order j (or i) in S'. It follows that

Gi(S)=tu+Dy, *=MaXy <k <m {ti+Py %},

G (S)=tetpyr*+Pj, (1 + D=max cksm{ G+Dy T+ (7 + 1Y,

G (S)=ty+p;, r*=maxq <k<mf ti+py r*}, and

Gi(S)=ty Py T+ Dy (r+ 1)7=Maxs < e { bt Py Py T+1)°).
Proposition 1. If

V1<k<m, ppd - A+1/N% < pg<pj, di—di<@p—py) =T + 1),
then S dominates S'.

Proof. It follows from py<p;, that ti+p; r*<ti+p;r® and

Py TSt Py PPy (M + DB Py r+py (r + 1D, V1 <k <m.
Thus,

Gi(S)=max ck<m | tk+Pi T} <Max; ckem{ b+ Py} = G (S)

Gi(S)=maxy <i<m {ti+Py T} SMaXs <kemf bt Py T+Py (1 + 1)) = G(S)

<max; cksmi Py +Py (1 + DY = G(S")

Now, we split the proof into two parts.

Case 1; di<d,. In this case, it follows from of [7] that

TO+TiOLT;H+Ti(S).

Case 2; d; > d;. In this case, on one hand, we have

(G S)-d)) — (Ci(S)—-dp=(G;(SH—Ci(S)) + (di—d;) > 0,implying

that T;(S) < T;(S"). On one hand, it follows from

di—di<(Py—py) (r*~(r + 1)hthat , v 1 < k<m, and thus

G (S)—dj=maxq <k <m{ti+PipT+Pjp (7 + 1)—dj}

<Maxy ck<m{ P +py (1 + 1)=d;} = G(S)~d;,

implying that T;(S) < T;(S").

Summing up the above analysis, in both cases, we have

T(S)+T;(S)<T;(S)+T;(S"), as required.

As a direct consequence of Proposition 1, one can obtain the
following result.

Proposition 2. If v 1 < k < m, py<py.di<d;, then S dominates S'.

Proposition 3. If Vv 1<k <m,py<p,(1 - (1+1/r)%), then S dom-
inates S.

Proof On one hand, py<p;(1 - (1+1/r)*) implies p; < py.
v 1 < k < m, and thus, by Proposition 1, G;(S)<G;(S) < Gi(S). On the

Download English Version:

https://daneshyari.com/en/article/6892788

Download Persian Version:

https://daneshyari.com/article/6892788

Daneshyari.com

https://daneshyari.com/en/article/6892788
https://daneshyari.com/article/6892788
https://daneshyari.com

