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a b s t r a c t

This paper considers a stochastic version of the shortest path problem, namely the Distributionally Ro-
bust Stochastic Shortest Path Problem (DRSSPP) on directed graphs. In this model, each arc has a de-
terministic cost and a random delay. The mean vector and the second-moment matrix of the uncertain
data are assumed to be known, but the exact information of the distribution is unknown. A penalty
occurs when the given delay constraint is not satisfied. The objective is to minimize the sum of the path
cost and the expected path delay penalty. As this problem is NP-hard, we propose new reformulations
and approximations using a sequence of semidefinite programming problems which provide tight lower
bounds. Finally, numerical tests are conducted to illustrate the tightness of the bounds and the value of
the proposed distributionally robust approach.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Shortest Path (SP) problem is a well-known combinatorial
optimization problem and has been extensively studied for the last
few decades [3,8,10]. The objective of SP is to find a path with
minimum distance or cost between two specified vertices of a
given graph. In the deterministic SP problem, all the parameters
are assumed to be known. However, due to different kinds of real
life uncertainties, it may be difficult to specify the parameters
precisely. Assuming deterministic values for parameters could lead
to infeasibilities when the prescribed deterministic solution is
implemented. One way to address this issue is robust optimization
where the constraints involving random parameters are satisfied
for all realizations of the random events (see, e.g., Soyster [29],
Ben-Tal and Nemirovski [5]). Moreover, the random parameters
are defined within a given uncertainty set. For a comprehensive
overview on robust optimization, we refer the reader to the book
by Ben-Tal et al. [4], the survey by Gabrel et al. [12] and references
herein.

The robust shortest path problem has been widely studied. For
instance, Yu and Yang [33] studied the robust shortest path pro-
blem in a layered network under two robustness criteria; they
proved that the problem is NP-complete and devised a pseudo-
polynomial algorithm. Gabrel et al. [13] proposed an integer linear
program formulation for the studied robust shortest path and

analyzed the theoretical complexity of the resulting problems.
An alternative to robust optimization is to model the problem

as a stochastic optimization problem. The stochastic shortest path
problem (SSPP) has also been widely studied in the past decades
[15,18,20,22,24]. Provan [25] and Polychronopoulos and Tsitsiklis
[26] studied expected shortest paths in networks where in-
formation on arc cost values is accumulated as the graph is being
traversed, while Nikolova [23] maximized the probability that the
path length does not exceed a given threshold value. Nie and Wu
[22] studied the problem of finding a priori shortest paths to
guarantee a given likelihood of arriving on-time in a stochastic
network and also provided a pseudo-polynomial approximation
based on extreme-dominance.

In transportation management systems, stochastic optimization
has been applied widely as well. Sen et al. [27] formulated a net-
work flow multiobjective model where one objective function
consists in minimizing the expected travel-time between given
origin and destination nodes whereas the second objective function
minimizes the variance of travel-time. Miller-Hooks and Mahmas-
sani [17] addressed the problem of determining least expected time
paths in stochastic, time-varying networks where the arc weights
(arc travel times) are random variables with probability distribution
functions that vary with time. Xing and Zhou [32] investigated a
fundamental problem of finding the most reliable path under dif-
ferent spatial correlation assumptions, and a Lagrangian substitu-
tion approach is used to get a lower bound. Fu and Rilett [11] stu-
died a dynamic and stochastic shortest path problem to come-up
with the expected shortest path in a traffic network where the link
travel times are modeled as a continuous-time stochastic process,
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and proposed a heuristic algorithm based on the k-shortest path
algorithm. In a recent paper, Mokarami and Hashemi [19] con-
sidered both robust and stochastic versions of the constrained
shortest path problem, where an uncertain transit time was asso-
ciated to each arc in addition to the arc cost. Moreover, they pre-
sented tractable approaches for solving the corresponding robust
and stochastic constrained shortest path problems.

Most formulations and solution algorithms that address the
SSPP require the knowledge of the underlying probability dis-
tributions of the random data. When the probability distribution is
not known in advance, distributionally robust optimization can be
used to handle the uncertainty [14] where only a part of the un-
certainty information is required, such as the first two moments
and the uncertainty support [7,9]. In addition, a wide range of
distributionally robust optimization problems can be reformulated
as SDP problems, and hence solved efficiently thanks to semi-
definite programming (SDP) [9].

In this paper, we study the Distributionally Robust Stochastic
Shortest Path Problem (DRSSPP) where only a part of the in-
formation on random data is assumed to be known. In this model,
each arc has a deterministic cost and a random delay. Further-
more, we assume that only the first and the second moments of
the delay are known. This problem has a simple recourse for-
mulation, i.e., we deal with the delays of the path by introducing a
penalty which is incurred when the delay constraint is not sa-
tisfied. The objective is to minimize the sum of the path cost and
the expected path delay penalty. As the deterministic shortest
path problem with delay is NP-hard [31], it follows that DRSSPP is
also NP-hard by choosing all the arc variances equal to 0.

This paper is organized as follows. In Section 2, we give the
mathematical formulation of DRSSPP. Two equivalent determi-
nistic formulations are presented in Section 3. In Section 4, we
present a copositive reformulation of DRSSPP when the support is
nonnegative. In Section 5, two relaxed versions of DRSSPP are gi-
ven to approximate the original problem. In Section 6, a numerical
study is provided to evaluate the approximation and to illustrate
the value of the proposed distributionally robust approach. The
conclusions are given in the last section.

2. DRSSPP formulation

Let = ( )V A, be a digraph with = | |n V nodes and = | |m A arcs.
Each arc ∈a A has an associated cost ( ) >c a 0 as well as a random
delay represented by the random variable δ̃( )a . We assume w.l.o.g
that …c c, , m1 denote the costs while δ δ˜ … ˜, , m1 are the random
delays. Let = { … }c c c, , m1 and δ δ δ˜ = { ˜ … ˜ }, , m1 .

When the exact probability distribution of δ̃ denoted by is
known, the Stochastic Shortest Path Problem (SSPP) consists in
finding a directed path between two given vertices s and t such
that the sum of the cost and the expected delay cost is minimal.
The delay cost is based on a penalty per time unit >d 0 that has to
be paid whenever the total delay exceeds a given threshold >D 0.
In transportation applications, D may represent the preferred ar-
rival time and d the unit cost of delay, so the last term of the
objective represents the expected cost of delay.

Then, SSPP can be mathematically formulated as follows [6]:

δ( ) + · ˜ −
( )∈{ }

+⎡⎣ ⎤⎦c x d x DSSPP min
1ax

T T

0,1 m

= ( )Mx bs.t. 1b

where [·] = { ·}+ max 0, , [ ] X denotes the expectation of a random
variable X , ∈ ×M n m is the node-arc incidence matrix and ∈ b n,

with all elements being 0 except the s-th and t-th elements, which
are 1 and �1, respectively [1].

The objective function is composed of two terms, namely the
total cost of the shortest path and the expectation cost related to
the delay constraint. The second term can be interpreted as the
expectation of individual penalization of excess delays of the arcs.
This formulation is also known in stochastic programming as a
simple recourse formulation.

2.1. Distributionally robust formulation

SSPP requires that the exact information of the distribution
is known. However, this is not often the case for many practical
problems. Therefore, distributionally robust optimization can be
used to handle the uncertainty. In this paper, we model the SSPP as
distributionally robust SSPP as follows:

δ( ) + · ˜ −
( )∈{ } ∈

+⎡⎣ ⎤⎦c x d x DDRSSPP min max
2ax

T T

0,1 m

= ( )Mx bs.t. 2b

where is the collection of probability distributions of interest.
In the following, DRSSPP is considered under the following key

assumption:

Assumption (A1). The distributional uncertainty set accounts for
information about the support , mean μ, and an upper bound Σ
on the covariance matrix of the random vector δ̃

μ Σ
δ
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δ μ δ μ Σ
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where is the set of all probability distributions on the mea-
surable space ( ) ,m , with being the Borel s-algebra on m.

3. Deterministic formulations

In this section, we present two equivalent deterministic for-
mulations of DRSSPP. The first formulation is a direct derivation
similar in approach to previous work [9]. The second one is a new
formulation with a smaller matrix constraint size than the first
one, which is much more effective computationally, as shown in
Section 6.

Delage and Ye [9] have previously studied the distributionally
robust approach; they gave an equivalent deterministic formula-
tion which we apply hereafter to DRSSPP.

Theorem 1. Under assumption (A1), together with = m, problem
(2) is equivalent to the following deterministic problem:

Σ μμ μ

( )

+ ·(( + )• + + ) ( )

∈{ } ∈ ∈ ∈ ×  

c x d tQ q
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