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a b s t r a c t

A special data compression approach using a quadtree-based method is proposed for allocating very
large demand points to their nearest facilities while eliminating aggregation error. This allocation
procedure is shown to be extremely effective when solving very large facility location problems in the
Euclidian space. Our method basically aggregates demand points where it eliminates aggregation-based
allocation error, and disaggregates them if necessary. The method is assessed first on the allocation
problems and then embedded into the search for solving a class of discrete facility location problems
namely the p-median and the vertex p-center problems. We use randomly generated and TSP datasets
for testing our method. The results of the experiments show that the quadtree-based approach is very
effective in reducing the computing time for this class of location problems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is a common practice when dealing with large location
problems to aggregate demand points known as Basic Spatial Units
(BSUs) into a small number of Aggregated Spatial Units (ASUs). Such
an aggregation usually leads to error due to both distance measure-
ment and allocation. Many of the aggregation schemes are iterative
processes where the allocation must be performed several times to
find the best solutions having the least errors. A two-phase
approach is commonly used where in the first phase an aggregated
(smaller) problem is constructed by solving a clustering problem,
and in the second phase the aggregated location-allocation problem
is then solved. It was noted that the design of aggregation schemes
that minimize aggregation error is itself a hard problem which has
not yet been solved successfully for a large number of demand
points, see Francis and Lowe [11] and Francis et al. [8,9].

Hillsman and Rhoda [15] introduced three sources of error arising
from demand point aggregation, known as source ABC error. Source A
error happens when the distance between an ASU and a facility is
applied in the model instead of the true distance between a BSU and a
facility. Source B error appears in the special case when a facility is

located at an ASU whereas source C error occurs when a BSU is
assigned to the wrong facility. Several schemes are introduced to
reduce or eliminate these types of aggregation error which are usually
grouped under two categories. These include data manipulation and
aggregation design which are briefly described next. For more details
on aggregation methods for location problems, see Francis et al. [9].

1.1. Data manipulation

Current and Schilling [5] proposed pre-processing the demand
data. Their method eliminates source A and B errors by assigning
the correct total weight BSU–facility distance to each ASU–facility
cell in the weighted distance matrix. The method does not address
source C error. To eliminate source C error, Hodgson and Neuman
[18] utilise continuous space, a set of Voronoi polygons and a GIS
overlay procedure to “aggregate on the fly”. Their method though is
successful in addressing source C error, it fails to eliminate source A
and B errors. Hodgson et al. [19] introduced a new type of error
known as source D error. This occurs if some of the BSU locations
happen to be at the potential sites. Bowerman et al. [4] introduced a
demand portioning method that applies the Current and Schilling
[5] approach to eliminate source A and B errors while producing
ASUs on the fly when using a vertex interchange procedure to
eliminate source C error. Hodgson and Hewko [17] studied aggrega-
tion and surrogation errors for the p-median problem using
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Edmonton, Canada data. The authors showed that the surrogation
error was more a serious problem than the aggregation error.

1.2. Aggregation zone design

Francis and Lowe [11], Francis et al. [7,10,8,9], and Andersson
et al. [2] dealt with aggregation error by developing aggregation
zones for which error bounds can be determined. Their methods
established rectangular zones which can be long and narrow, and
hence prone to aggregation errors. Erkut and Bozkaya [6] empiri-
cally evaluated some aggregation methods. A primal-dual VNS
metaheuristic for large p-median clustering problems was pro-
posed by Hansen et al. [13] where a Reduced VNS is used to get
good initial solutions which are then fed into a VNS with decom-
position. Qi and Shen [23] investigated the worst-case analysis of
demand point aggregation for the Euclidean p-median problem on
the plane. García et al. [12] developed an alternative covering
based formulation which has a small subset of constraints and
variables. This method is shown to be more efficient especially
when p is relatively large. Avella et al. [3] proposed an aggregation
heuristic based on Lagrangean relaxation for large scale p-median
problem that produced excellent results. Very recently Irawan and
Salhi [20] and Irawan et al. [21] developed a multi-phase approach
by solving a series of subproblems either optimally or heuristically
where the obtained facility locations are then used as promising
potential sites. Competitive results were generated when com-
pared to the best known solutions. For more details on aggregation
error measurements and papers dealing with aggregation to
location problems, the reader will find the excellent survey paper
by Francis et al. [9] informative and very valuable. The authors also
point out effective as well as ineffective errors measures.

The process of determining an aggregation scheme with a
minimum error is an NP-hard problem, see Francis and Lowe [11].
This difficulty has led us to develop a method where we do not
aggregate demands by designing a general aggregation of demand
points but we conduct aggregation with reference to a specific set of
given facilities. In the location-allocation context, the method would
aggregate demand relative to p trial facilities as they arise during the
search as usually applied in heuristics and metaheuristics.

The main contribution of this paper is the development of an
effective quadtree method (QM) used for allocating the demand
points to their nearest facility when solving a class of large Euclidean
discrete location problems. This allocation technique could easily be
incorporated in those recent powerful algorithms for large-scale
location problems as this mechanism could enhance their efficiency
even further.

The paper is organized as follows. A brief on the quadtree
method is given in Section 2 followed by a quadtree-based
methodology in Section 3. The computational results, comparing
QM against the classical allocation methods, are presented in the
fourth section. The integration of QM in solving both the discrete
p-median and the p-center problems is attempted in the fifth
section. The last section provides a summary of our findings and
highlights some suggestions for future research.

2. A brief on the quadtree method

This section demonstrates an efficient aggregation scheme that
eliminates all types of allocation aggregation errors. The main idea of
the scheme is adopted from the presentation given at the INFORMS
conference in Montreal by Hodgson and Salhi [16]. The method
utilized a spatial data compression, known as quadtrees [24], to
partition the study area. The demand points could obviously also be
partitioned by Voronoi polygons. Fig. 1 shows a Voronoi polygons
scheme with a number of demand points and three facilities (p¼3).

Hodgson and Neuman [18] used this method to eliminate source C
error. Noaves et al. [22] also adopted Voronoi polygons for solving
continuous location-districting problems.

Though the Voronoi polygons-based allocation can be an
efficient method to allocate demand points to facilities, one of
the limitations is that for each new set of facilities, the new set of
polygons must be generated which can be time consuming. The
quadtree data structure, inspired from a raster Geographic Infor-
mation System (GIS), is adapted to overcome this difficulty. The
heart of QM is to pre-generate an appropriate set of common
polygons with which we can systematically allocate spatial group-
ing of demand points to their common closest facility until all
demand points have been allocated. A hierarchical organization of
successively generating smaller spatial groupings is required to
eliminate all aggregation errors.

A map is partitioned by raster GIS into a tessellation of square
grid cells called pixels. Each pixel has its attributes, usually by
assigning a number. For example a land use map might utilise 1 for
green area, 2 for water, 0 for no data, and so on. Fig. 2 shows an
illustration of a quadtree system where a raster grid is partitioned
into a hierarchy (tree) of quadrants.

The quadtree system first partitions the map into four quad-
rants, each quadrant assigned with a single digit between 0 and 3.
Then, each of these quadrants is then partitioned into four
quadrants, each address with a second such digit. This procedure
continues until a certain number of levels where each successive
partition is assigned its corresponding digit between 0 and 3. Fig. 2
also presents the numbering system and the quadtree partitioning.
The figure shows that the lightly shaded patch of four grid cells is
assigned 200 whereas the darker grid cell is addressed 3100.

In GIS, the quadtrees are usually utilized to capture areas with
the same data characteristic or attribute. Many adjacent pixels
may have the same attribute in a rasterized map. In the location-
allocation problem, we develop a method that adapts the quadtree
structure to capture areas with the same spatial attribute (i.e.,
areas that are entirely closer to one facility than to any other). The
number of allocations is significantly reduced by quadtrees. Fig. 3
shows how the quadtree structure deals with a location-allocation
problem. There are 32�32 raster and each pixel is to be allocated
to the closest of the three facilities. There is also the Voronoi
polygon to recognize the correct allocation. Let L represent the
quadtree level, with 0 denoting the original undivided study area.

Table 1 shows the result of an example in Fig. 3. At level 1, the
entire quadrant 0 (16�16 pixels) is closer to one facility than to
any other. Its entirety can be allocated to that facility, it means that
256 pixels are aggregated and allocated accurately at once. Four
level 2 quadrants (aggregations) are each allocated to the closest
facility; in other word 256 pixels are accurately allocated. At level 3,
sixteen quadrants assign another 256 pixels. Three quarters of
the study area's 1024 pixels has now been accurately allocated by
using 21 quadrants at the top three levels. Thirty two quadrants
(128 pixels) are each allocated to the closest facility at level 4.
Finally, at level five, 72 pixels can be allocated leaving 56 split only.

At some level, the limited amount of aggregation error remain-
ing may be accepted by assigning all contained demand points to a
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Fig. 1. A Voronoi polygons scheme.
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