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a b s t r a c t

In this paper, we develop a paired cooperative reoptimization (PCR) strategy to solve the vehicle routing
problem with stochastic demands (VRPSD). The strategy can realize reoptimization policy under
cooperation between a pair of vehicles, and it can be applied in the multivehicle situation. The PCR
repeatedly triggers communication and partitioning to update the vehicle assignments given real-time
customer demands. We present a bilevel Markov decision process to model the coordination of a pair of
vehicles under the PCR strategy. We also propose a heuristic that dynamically alters the visiting
sequence and the vehicle assignment given updated information. We compare our approach with a
recent cooperation strategy in the literature. The results reveal that our PCR strategy performs better,
with a cost saving of around 20–30%. Moreover, embedding communication can save an average of 1.22%,
and applying our partitioning method rather than an alternative can save an average of 3.96%.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Vehicle routing problems (VRPs) involve designing a set of
minimal-cost routes to meet customer demands under a group of
operational constraints (see, e.g., [1–3]). In classical VRPs, the
demands are assumed to be known with certainty, and all the
relevant information to compute the routes is available in advance.
However, in practice, customer demands and several other aspects
are often stochastic. Solving the problem deterministically by
replacing the stochastic parameters with their expected values
does not give good solutions [4]. This justifies the development of
stochastic models that can construct solutions with regard to the
observed informational flow (i.e., when and how the values
associated with the stochastic parameters become known).

In this paper, we consider the VRP with stochastic demands
(VRPSD) in which the demand is known only when the vehicle
arrives at the customer location. It has many real-world applica-
tions, such as local-deposit delivery and collection from bank
branches [5], home oil delivery [6], beer distribution, and garbage
collection [7].

In the VRPSD, a vehicle may reach a customer location without
sufficient residual capacity to fulfill the demand, leading to a route

failure, in which case a recourse action is necessary. Various
recourse actions are possible: (i) replenishing the vehicle at the
depot; (ii) scheduling a different vehicle to visit the customer
where the failure occurred; or (iii) skipping the customer alto-
gether (in this case a penalty is incurred). We consider (i), i.e., a
driver performs a replenishment trip to the depot when a failure
occurs.

Different modeling approaches have been developed to deal with
the uncertain demands. These modeling approaches depend on the
way both the routing and replenishment decisions are made, either
static or dynamic [8]. For static approaches, stochastic programming
with recourse (SPR) is often used [9]. It is a two-stage approach that
minimizes the total cost of the planned routes and the expected
recourse actions (e.g., [10]). Dynamic approaches, which apply a
reoptimization policy [11,12], use a Markov decision process (MDP) to
model the real-time decisions, given the available vehicle capacity
and the set of unvisited customers (e.g., [9,13–15,8,16,12]).

Given the recent technological advances, reoptimization poli-
cies are now a viable strategy to decrease routing costs in the
VRPSD context. However, efficiently solving the MDP models is
challenging given the large numbers of actions, stages, and states
involved. Therefore, most studies assume that a single vehicle is
available.

Secomandi and Margot [8] observe that the existing literature
on the VRPSD with reoptimization is scant, focusing on heuristic
methods for the single-vehicle situation (e.g., [17–19,14,15,8,12]).
To the best of our knowledge, only one study considers the
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multivehicle case: Goodson et al. [16] propose a roll-out algorithm,
real-time information is used, and the customers are dynamically
assigned to different vehicles when the demands are revealed.

The solution of the MDP model for the VRPSD in the multi-
vehicle context is challenging. Dynamic routing and replenish-
ment decisions are necessary, and the assignment of customers to
vehicles should also be performed dynamically. We propose the
use of two general concepts that have proved to be efficient for the
VRPSD: partial reoptimization of the routes and paired-vehicle
cooperation.

The partial reoptimization technique was proposed by Seco-
mandi and Margot [8] for the single-vehicle VRPSD. It computes
optimal policies locally for subsets of states, to be used for the
dynamic routing and replenishment when the demand is revealed.
The paired-vehicle cooperation is based on the paired locally
coordinated (PLC) scheme [20]. The PLC forms pairs of vehicles
and shares customers within each pair, giving a solution in which
each customer is dynamically served by a vehicle or its partner.

We focus on developing a cooperation strategy, the paired
cooperative reoptimization (PCR) strategy, for a single pair of
vehicles. We can then solve the multivehicle problem by clustering
the customers into groups and serving the customers in each
group with a pair of vehicles, as suggested by Ak and Erera [20].
The PCR strategy is based on the partial reoptimization technique
and adds communication between the two vehicles. Via effective
communication, the customers are dynamically chosen to be
served by one of the two vehicles when the updated information
becomes available.

This paper's main contribution is the development of the PCR
recourse strategy, which is formulated as a bilevel MDP. This
strategy enables a pair of vehicles to dynamically serve a set of
customers under a reoptimization policy. We propose a heuristic
that relies on both partial reoptimization and real-time commu-
nication to dynamically construct the routes performed by the pair
of vehicles. We compare the performance of PCR strategy through
a numerical study that shows the benefits, in terms of the total
travel cost, with respect to other recourse strategies.

The remainder of this paper is organized as follows. In Section
2, we present our assumptions and discuss the general paired
reoptimization problem. In Section 3, we give the definition of the
PCR, and in Section 4 we discuss the bilevel MDP. In Section 5, we
present our heuristic. Finally, in Section 6, we give the results of
the computational study. We compare our algorithm with the PLC
approach and describe two experiments that illustrate the coop-
eration of the PCR.

2. Problem definition

2.1. Notation and assumptions

In this paper, a single pair of vehicles cooperate to serve a set of
customer demands. We use notation similar to that of Secomandi
and Margot [8]. Given a complete network, let the set of nodes be
{0;1;…;N}, with N a positive integer. Node 0 denotes the depot
and C ¼ f1;…;Ng is the set of customers. The distances dði; jÞ
between any two nodes i and j are known, symmetric, and satisfy
the triangle inequality: dði; jÞrdði; lÞþdðl; jÞ, with l an additional
node. Two vehicles with the same capacity Q, denoted as t1 and t2,
are initially located at the depot and must eventually return there.
Let ξi, i¼ 1;2;…;N be the discrete random variable that describes
the demand of customer i. Its probability mass function is
piðeÞ ¼ Prfξi ¼ eg, e¼ 0;1;…; ErQ , and piðeÞ ¼ 0, e¼ Eþ1;…;Q ,
with E a nonnegative integer. The customer demands ξi are
independent of the vehicle routing/replenishment policy. The
realization of ξi becomes known when the vehicle arrives at

customer location i. The total depot capacity is at least N � E, so
that all the customers can be served.

We assume that each customer can be served by only one
vehicle. Moreover, split deliveries are allowed, i.e., when a failure
occurs, the vehicle delivers its existing load to the customer, then
returns to the depot to reload, and subsequently completes the
interrupted delivery.

The vehicles can communicate to dynamically modify their
routes, and the locations, available capacities, and unvisited
customers are visible to both of the vehicles. The information is
shared under three assumptions. First, we ignore the time spent
on loading and unloading and on planning (the vehicle assign-
ments and the next customer to visit). Second, the vehicles are not
permitted to have idle time. Third, the vehicles travel at the same
speed. Therefore, at any given time, each vehicle's location and
status (e.g., en route or replenishing) can be found by calculating
the total distance traveled.

2.2. Formulation of general paired reoptimization problem

We describe the general problem with reference to the MDP
formulations for the single-vehicle situation [12,8] and the multi-
vehicle case [16].

The paired-vehicle problem is a special case of the multivehicle
problem, and it can be stated as follows. When a vehicle finishes
serving its current customer, a new customer will be assigned, and
the vehicle must decide whether to visit the new customer directly
or via the depot. The new customer is chosen from the set of
unassigned customers. The vehicles must coordinate their efforts
by considering the influence of each decision on the other vehicle
and on the future cost.

The decisions occur when a vehicle completes an assignment,
not when it arrives at a new customer and observes the demand.
The next location is always a customer location and not the depot.

We formulate the problem as an MDP with stages in the set
Ω0 ¼ f0;1;2;…;K 0g. Each stage kAΩ0\f0g starts as a vehicle finishes
its current assignment. The two vehicles may complete their
assignments simultaneously and trigger the next stage together.
K 0 is the final stage that occurs when no customer is unassigned.
Let the state space for the process be Ψ 0. For each stage
kAf0;1;2;…;K 0g, we characterize the corresponding state as
xk ¼ ðl1; l2; q1; q2;Rkðl1; l2ÞÞ. Here, l1 and l2 are the customer loca-
tions where the two vehicles completed their last assignments, q1
and q2 are the available capacities after those assignments, and
Rkðl1; l2Þ is the set of remaining customers at stage k. The initial
system state is x0 ¼ ð0;0;Q ;Q ;CÞ and the final system state is
xK 0 ¼ ðl1; l2; q1; q2;ϕÞ. For example, suppose the current state is
xk ¼ ðl1; l2; q1; q2;Rkðl1; l2ÞÞ, and the vehicles will next serve custo-
mers j1 and j2. Suppose that vehicle t1 finishes serving customer j1
and triggers the next stage kþ1, while vehicle t2 is either en route
to customer j2 or replenishing so as to meet j2's demand. In this
case, the state updates to xkþ1 ¼ ðj1; l2; q1 0; q2;Rkþ1ðj1; l2ÞÞ, where
q1

0 is the residual capacity of vehicle t1 that is q1 0 ¼ q1�e (e being
the realization of the demand for customer j1).

Given state xk, action ðak1; ak2Þ assigns the two vehicles to the next
customer locations. Let tAf1;2g represent the vehicles t1 and t2, and
zkDf1;2g be the set of vehicles that trigger stage k by completing
their current assignments. Clearly, zkaϕ, and z0 ¼ f1;2g indicates
that both vehicles start to serve new assignments at the beginning. In
addition, let the vehicles in ff1;2g\zkg, which have not completed their
assignments, continue on their planned routes. The set of actions
available for state xk; kAΩ0, is then

AðxkÞ ¼ fðak1; ak2Þjakt ¼ jð1Þ or jð0Þ; 8 jARk�1ðl1; l2Þ\fak�1
1 ; ak�1

2 gðkZ1Þ

8 tAzk; akt ¼ ak�1
t ; 8 tAff1;2g\zkg; ak1aak2g ð1Þ
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