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a b s t r a c t

This paper studies the Ordered Spanning Tree Problem, where the weights of the edges of the tree are
sorted and then linearly combined using a previously given coefficients vector. Depending on the
coefficients, several objectives can be incorporated to the problem. We pay special attention to the search
of spanning trees with balanced weights, i.e., where the differences among the weights are, in some
sense, minimized. To solve the problem, we propose two Integer Programming formulations, one based
on flow and the other one on the Miller–Tucker–Zemlin constraints. We analyze several potential
improvements for both the formulations whose behaviors are checked by means of a computational
experiment. Finally, we show how both the formulations can be adapted to incorporate to the objective
non-linear functions of the weights.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Given a connected network (undirected connected graph (V, E)
plus weights on the edges) with n+1 nodes1 and m edges, a
spanning tree (ST) is defined by a connected subgraph containing
n+1 nodes and n edges. That of finding the spanning tree with
minimum sum of weights is the very well-known Minimum
Spanning Tree Problem (MSTP). Although the number of spanning
trees in a given graph can be huge (ðnþ 1Þn�1 for a labeled
complete graph), finding an ST of minimum weight is a simple
task. The first algorithm for finding a minimum ST was developed
in 1926 [1,2]. Kruskal [11] and Prim [21] designed the most widely
used algorithms, which can be implemented in Oðm log nÞ and
Oðmþ n log nÞ times, respectively.

Although the simplicity and efficiency of the solution algo-
rithms prevent against using Integer Programming models to solve
the MSTP, extensions of the problem which are not so simple do
benefit of good formulations. Examples of these extensions are the
different Steiner tree problems [9], the so-called Generalized MSTP
[16], the degree-constrained MSTP [17], the Optimum Commu-
nication Spanning Tree Problem [3] and the Tree of Hubs Location
Problem [4], among many others. More than a simple formulation,
Edmonds [6] introduced a polyhedral description of the MSTP, that
is to say, a polytope whose vertexes are the incidence vectors of

spanning trees of the graph:
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The exponential number of inequalities in the above description
has led to the development of other IP formulations which, not
being descriptions of the corresponding polyhedra (the respective
convex hulls of their sets of integer solutions), have more tractable
sizes. The keys in these formulations are either (i) guaranteeing
connectivity, or (ii) avoiding the formation of cycles, since this
leads to connectivity of the graph when the number of edges is
fixed to n. We highlight two of the different approaches that have
been conceived. The first one (see e.g. [12]) is to consider the MSTP
as a network design problem where some flow between the nodes
of the network is sent; here edge variables ye indicate whether or
not the edge e is available to carry any flow and additional flow
variables distinguish the two directions of the edge. The second
approach is to incorporate the Miller–Tucker–Zemlin (MTZ) [15]
constraints (and corresponding variables) to the formulation.
These constraints impose an order to the nodes of the graph in
such a way that, forcing each node to point a previous one in the
order, cycles cannot be closed.

Generally speaking, spanning tree optimization models in the
literature deal with the minimization of the sum of edge weights.
Establishing a parallelism with the Location Analysis field, they
focus on the median objective, but do not pay great attention to
equitable solutions, like those got using the center and range
objectives (for an introduction to equity measures in the field of
Location see [14]). Using, for instance, the range objective, i.e.,
minimizing the difference between the heaviest and the lightest
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edges in the tree, balanced2 trees will be obtained, which can be
useful in certain applications where the weight represents the
capacity of a link. As we will see shortly, different objectives result
in completely different optimum spanning trees. But, instead of
limiting our paper to a concrete model, we have extended the
parallelism with location models to flexible objectives. These have
been introduced in the study of location problems by means of the
ordered median objective (a monograph on the theme is [18]). The
idea, once adapted to the context of spanning trees, is to optimize
a linear combination of the sorted (we assume in increasing order)
weights of the edges in the ST. By changing the coefficients of the
linear combination, several models can be unified, in particular
many different equitable objectives like the range and the absolute
deviation (sum of the absolute values of the differences between
all pairs of weights). The interest of this problem was previously
observed in [7], where it was presented as an example inside the
general framework of ordered discrete optimization.

In Table 1 we present a few examples of objectives and their
corresponding coefficients (note that the non-zero coefficients in
the interquartile range must be fixed in the correct positions). For
instance, to get the coefficients for the absolute deviation objec-
tive, it should be noticed that the i-th weight in the tree will
appear in the sum (i) i�1 times with positive sign, and (ii) n� i
times with negative sign. Thus its coefficient will be ð2i�1Þ�n.

A critical difference with respect to the location models is that
some of the objectives will have null interest when generating trees.
Indeed, all the vectors without negative coefficients will have the MST
as optimal solution, as we will prove in the next section. Therefore,
center and centrum objectives have no special interest. On the other
hand, optimal solutions obtained using vectors which include at least
one negative coefficient can be completely different. As a sample, we
show in Fig. 1 (top–bottom, left–right) the optimal solutions which
correspond with the coefficients given in Table 2. For the graph with
weights in Fig. 1 we have identified which are the spanning trees
which minimize the objective functions in Table 2 and we have
highlighted them with bold lines: the first tree in bold lines is the
Minimum Spanning Tree and it has cost 20¼ ð1;1;1;1;1;1;1Þ�
ð1;1;2;2;2;5;7Þ; the second tree is the one with smallest range and
it has cost 5¼ ð�1;0;0;0;0;0;1Þ � ð2;2;2;3;4;7;7Þ; the following one
is the spanning tree which minimizes the “maximum positive devia-
tion respect the median” and it has cost 3¼ ð0;0;0;�1;0;0;1Þ�
ð1;2;3;5;6;7;7Þ. Apart from the sixth and the seventh cases, any
other pair of trees are different.

Our goal then is to produce and analyze a good Integer
Programming formulation for the problem, named Ordered Span-
ning Tree Problem (OSTP). This formulation must combine two main
ingredients, namely the construction of a tree and the order of the
weights. In this first approach we are going to compare the two
formulations based on both flow and MTZ constraints (regarding
the tree construction). The ordering part is shared by both the
formulations, and is based on a covering point of view which gave
good results when applied to ordered location problems.

Section 2 gives technical details needed to formulate the
problem. Sections 3 and 4 give the flow and MTZ formulations,
respectively. Section 5 introduces valid inequalities for both the
formulations. Later on, Section 6 generalizes both the flow and the
MTZ formulations of the OSTP to the case in which the objective
function is not linear. Finally, Section 7 summarizes our computa-
tional results when comparing both formulations and Section 8
closes the paper with some conclusions.

2. The ordered spanning tree problem

2.1. Technical details

Let G¼ ðV ; EÞ be a connected, undirected graph with set of
vertices V ¼ f1;…;nþ 1g, set of edges EDfði; jÞAV2 : io jg and
positive weights associated to the edges cijARþ 8ði; jÞAE. Let
λ¼ ðλiÞARn be an n-dimensional vector of real coefficients. Let T
be the set of spanning trees in G. Given any tree T ¼ ðV ; ET ÞAT , we
sort the (not necessarily different) weights ðcij : ði; jÞAET Þ in

cð1ÞðTÞrcð2ÞðTÞr⋯rcðnÞðTÞ:

Then, the Ordered Spanning Tree Problem is defined as

ðOSTPÞ min ∑
n

i ¼ 1
λicðiÞðTÞ : TAT

( )
:

With vð OSTP) we represent the optimal value of (OSTP) and let
N≔f1;…;ng. We also define the neighborhood of iAV as

NðiÞ≔fjAV : ði; jÞAE or ðj; iÞAEg:

2.2. The case of non-negative coefficients

Although the following result, as well as Proposition 2, can be
considered like particular applications of Theorem 6.1 in [10], in
order to avoid the introduction of a large number of concepts
regarding polyhedral techniques in Combinatorial Optimization,
we present demonstrations oriented to our concrete problem. The
interested reader can find another approach for the proof of
Proposition 1 based on matroid bases in Theorem 5.3 of [24].

Proposition 1. Let TnAT be a minimum spanning tree of G. Then Tn

is optimal of (OSTP) for any λARn
þ.

Proof. Let T ′ be an optimal solution to (OSTP) for a given non-
negative coefficient vector λa1. It suffices to prove that an
optimal solution to the MSTP obtained by means of Kruskal's
algorithm gives the same objective value as T ′ for (OSTP), i.e.,

∑
n

i ¼ 1
λicðiÞðT ′Þ ¼ ∑

n

i ¼ 1
λicðiÞðTnÞ:

Let then Tn be such an optimal solution of MSTP.
Let a1ra2r⋯ran be the weights associated to the edges

e1; e2;…; en of ETn sorted in the order of the algorithm, i.e., e1 is a
minimum weight edge and ei, i¼ 2;…;n, has the minimum weight
among those edges such that the subgraph of G induced by
fe1;…; eig is acyclic. It is evident that the first i edges e1;…; ei form
a forest with minimumweight among all the spanning forests in G
with i edges, iAN. Since the weights ai are obtained in increasing
order, Tn gives an objective value of ∑n

i ¼ 1λiai in problem (OSTP).

Table 1
Equitable objectives obtained by means of different coefficients.

Objective Coefficients

Median (MSTP) ð1;…;1Þ
Range ð�1;0;…;0;1Þ
Center ð0;…;0;1Þ
3-centrum ð0;…;0;1;1;1Þ
Median deviation (n odd) ð�1;…;�1;0;1;…;1Þ
Interquartile range ð0;…;0;�1;0;…;0;1;0;…;0Þ
Absolute deviation ð1�n;3�n;…;n�3;n�1Þ

2 We will not use the word balanced through the rest of the paper to avoid
confusion with the data structure used in computer science.
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