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a b s t r a c t

This paper introduces the multi-district team orienteering problem. In this problem, one must schedule a
set of mandatory and optional tasks located in several districts, within a planning horizon. The total
available time determined by the length of the planning horizon must be distributed among the districts.
All mandatory tasks within each district must be performed, while the other tasks can be performed if
time allows. A positive profit or score is collected whenever an optional task is performed. Additionally,
some incompatibility constraints between tasks are taken into account. The objective is to determine a
schedule for a set of tasks to be performed daily within each district, while maximizing the total collected
profit. A mixed integer formulation and an adaptive large neighborhood search heuristic are proposed for
this problem. The performance of the proposed algorithm is assessed over a large set of randomly
generated instances. Computational results confirm the efficiency of the algorithm.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The problem studied in this work arises from a real situation
faced by the Ministry of Transport in the province of Québec in
Canada. Periodically, every three or six months, the Ministry must
plan its road maintenance activities such as repairs or road
marking. The relevant region is divided into districts, to each of
which are associated mandatory and optional maintenance activ-
ities. All mandatory tasks must of course be performed over the
planning horizon, but optional tasks are only executed if time
allows. When an optional task i is performed, it generates a profit
or score si. All districts must be served, and the total available time
within the planning horizon must be split among the districts.
The amount of time assigned to each district is determined during
the planning stage.

Once the total time assigned to each district is determined, the
scheduling of activities is carried out by considering incompatibility
constraints between tasks and ensuring that all mandatory tasks are
performed. Incompatibilities between tasks can be the result of a
number of policies. The most common occurs when a road needs
repairs in both directions, in which case repairs cannot be carried
out in the two directions on the same day because one cannot close
both sides of the road simultaneously. Mandatory tasks are related

to repairs that are vital to keep a road in a functional state, while
optional tasks are those that can wait for the next planning horizon
without disabling the road. Usually, no more than 50% of the total
repairs are mandatory, while the rest are optional.

In this application, all districts are served in turn by a team of
workers based at a depot which remains open until the scheduled
tasks are completed. Every day, the team leaves the depot to
perform the schedule for that day and then returns to the depot.
A working day has a duration of 12 h and a working week contains
six working days. A team operates within the same district during
a certain number of full weeks.

The problem consists of constructing a schedule of mainte-
nance work over the planning horizon so that all mandatory tasks
are performed, and the total score associated with the optional
tasks that are performed is maximized. Each daily schedule is
viewed as a route in the context of vehicle routing. To the best of
our knowledge, this problem has never been addressed in the
scientific literature. We call it the Multi-District Team Orienteering
Problem (MDTOP) because the scheduling problem in each district
can be viewed as the Team Orienteering Problem (TOP) with addi-
tional constraints.

The TOP was introduced by Chao et al. [3]. In the TOP, given a
fixed amount of time for each one of themmembers of a team, the
goal is to determine m routes starting and ending at a specific
point through a subset of locations in order to maximize the total
score. The TOP is rooted in the Orienteering Problem (OP), also
known as the Selective Traveling Salesman Problem (STSP) (see e.g.,
[12,5–7]). Tang and Miller-Hooks [11] have proposed a tabu search
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algorithm for the TOP, whereas Boussier et al. [2] have developed a
branch-and-price algorithm for the same problem. Archetti et al.
[1] have proposed two variants of a generalized tabu search
algorithm and a variable neighborhood search algorithm for the
TOP and have shown that each of these algorithms outperforms
the heuristics of [11].

A variant of the TOP, called the TOPTW, was later introduced by
Vansteenwegen et al. [13]. In the TOPTW each vertex has an
associated time window. The authors have proposed an integer
linear programming formulation and an iterated local search
heuristic for this problem. The same authors [14] have also
proposed a path relinking algorithm for the TOP which outper-
forms the previous heuristics of Tang and Miller-Hooks [11] and of
Archetti et al. [1], among others.

In the MDTOP there are several districts, each of which contains
a subset of mandatory tasks (this feature is not included in the
TOP) and another subset of optional tasks. Additionally, the MDTOP
contains incompatibility constraints which are not present in the
TOP. In this paper, we propose a mixed integer linear programming
formulation, as well as an adaptive large neighborhood search (ALNS)
metaheuristic for the MDTOP.

The organization of this work is as follows. Section 2 formally
describes the MDTOP and provides a mathematical model for it.
Section 3 describes the proposed ALNS metaheuristic for the
problem under study. Computational results are presented in
Section 4, followed by conclusions in Section 5.

2. Formal problem description and model

Given a region partitioned into a set D of districts and a
planning horizon of h weeks, the MDTOP consists of determining
the number wd of weeks allocated to each district dAD and the
schedule of all tasks to be performed on each day of the wd weeks.
The total time allocated to the districts cannot exceed the length of
the planning horizon h, which means that ∑dADwdrh. To each
district sets of mandatory and optional tasks, called Md and Od,
respectively, are assigned. Within the time wd assigned to district
d, all mandatory tasks in Md must be completed, and some
optional tasks in Od can also be performed. All tasks, mandatory
and optional, consume some service time if they are performed,
and if an optional task iAOd is executed, a non-negative score si is
then collected. The aim of the MDTOP is to perform all mandatory
tasks and possibly some optional tasks in such a way that the total
collected score is maximized, the total time assigned to each
district d does not exceed wd, and some side constraints are
satisfied. Namely, the maximum duration of a working day is
12 h, each week contains six consecutive working days, and wd is
integer. Moreover, there are some incompatible tasks which
cannot be carried out during the same day.

2.1. Mathematical model

Let Gd ¼ ðVd;AdÞ be a complete graph representing a district
dAD, where the vertex set Vd ¼ fMd [ Od [ fed; edgg contains all
tasks in district d, and two copies ed and ed of the depot in district
d. Let ajd be the time needed to perform task j in district d, where
jAMd [ Od. The set Ad is the arc set in district d. The travel time tij
from vertex i to vertex j is known for all ði; jÞAAd. Each iAOd has an
associated profit si. Some tasks jAMd [ Od have an associated set
of tasks Cd

j � Vd\fed; ed; jg which cannot be performed on the same
day as j.

The sequence of tasks assigned to a team during a working day
is a route starting and ending at the depot and whose duration
does not exceed a time limit Tmax equal to 12 h in our application.
Since there are b¼6 working days in a week, the work performed

by the same team over a week in the same district can be
represented by a set of six routes.

For a better explanation of our model, we define the maximum
number of routes per district as Pd ¼min fhb; jVdjg; dAD. The
decision variables are defined as follows:

xpdij ¼
1 if in route p in district d; a task performed at vertex i

is followed by a task performed at vertex j; i; jAVd

0 otherwise:

8><
>:

ypdi ¼ 1 if a task at vertex i is part of route p in district dAD; iAVd

0 otherwise:

�

wd is the number of working weeks assigned to district d, dAD.
ui

pd represents the position of vertex i in route p in district d, iAVd.
The problem is then formulated as follows:

ðMDTOPÞ Maximize z¼ ∑
dAD

∑
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∑
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i ð1Þ
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∑
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∑
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∑
jACd

i

ypdj r1�ypdi dAD; iAVd\fed; edg;Cd
i a∅; pAPd ð12Þ

xpdij ; y
pd
i Af0;1g i; jAV ; pAPd ð13Þ

upd
i AZ iAV ; pAPd ð14Þ

wdAZþ dAD: ð15Þ
Objective (1) computes the total collected score of the selected

optional tasks. Constraints (2) and (3) state that each route starts
and ends at the depot and the number of routes does not exceed
the maximum number of days assigned to each district d. Cons-
traints (4) guarantee that each mandatory task is performed.
Constraints (5) ensure that an optional task is selected at most
once. Constraints (6) and (7), combined with (4) and (5), enforce
the flow conservation conditions at the vertices. Constraints (8)
mean that the maximum available time Tmax is not exceeded on
any route. Constraint (9) guarantees that all tasks are completed
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