Block models for scheduling jobs on two parallel machines with a single server

Keramat Hasani ${ }^{\text {a }}$, Svetlana A. Kravchenko ${ }^{\text {b }}$, Frank Werner ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Islamic Azad University, Malayer Branch, Malayer, Iran
${ }^{\mathrm{b}}$ United Institute of Informatics Problems, Surganova St. 6, 220012 Minsk, Belarus
${ }^{\text {c }}$ Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, Postfach 4120, 39016 Magdeburg, Germany

ARTICLE INFO

Available online 20 August 2013
Keywords:
Scheduling
Parallel machines
Single server

Abstract

We consider the problem of scheduling a set of non-preemptable jobs on two identical parallel machines such that the makespan is minimized. Before processing, each job must be loaded on a machine, which takes a given setup time. All these setups have to be done by a single server which can handle at most one job at a time. For this problem, we propose a mixed integer linear programming formulation based on the idea of decomposing a schedule into a set of blocks. We compare the results obtained by the model suggested with known heuristics from the literature.

1. Introduction

The problem considered in this paper can be described as follows. There are n independent jobs and two identical parallel machines. For each job $J_{j}, j=1, \ldots, n$, there is given its processing time p_{j}. Before processing, a job must be loaded on the machine $M_{q}, q=1,2$, where it is processed which requires a setup time s_{j}. During such a setup, the machine M_{q} is also involved into this process for s_{j} time units, i.e., no other job can be processed on this machine during this setup. All setups have to be done by a single server which can handle at most one job at a time. The goal is to determine a feasible schedule which minimizes the makespan. So, using the common notation, we consider the problem $P 2, S 1 \| C_{\max }$. This problem is strongly NP-hard since problem $P 2, S 1\left|S_{j}=S\right| C_{\text {max }}$ is unary NP-hard [5]. The interested reader is referred to $[3,6]$ for additional information on server scheduling models.

Several heuristics were developed for the problem $P 2, S 1 \| C_{\max }$ under consideration so far. In Abdekhodaee et al. [2], two versions of a greedy heuristic, a genetic algorithm and a version of the Gilmore-Gomory algorithm were proposed and tested. The analysis started in [2] was extended in Gan et al. [4], where two mixed integer linear programming formulations and two variants of a branch-and-price scheme were developed. Computational experiments have shown that for small instances with $n \in\{8,20\}$, one of the mixed integer linear programming formulations was the best whereas for the larger instances with $n \in\{50,100\}$, the branch-and-price scheme worked better, see [4].

[^0]In this paper, we propose a mixed integer linear programming formulation for the problem $P 2, S 1 \| C_{\max }$, based on the structure of an optimal schedule. The proposed models use the simple idea of a possible decomposition of any schedule into a set of blocks, which significantly contributes to a reduction of the number of jobs. We compare the performance of this model with the heuristics proposed in [4].

The remainder of the paper is organized as follows. In Section 2, we introduce two block models for the problem under consideration and give the resulting mixed integer programming formulations. In Section 3, we present computational results and perform a comparison with existing heuristics. Finally, we give some concluding remarks in Section 4.

2. Block models

It is easy to see that any schedule for the problem $P 2, S 1 \| C_{\max }$ can be considered as a unit of blocks B_{1}, \ldots, B_{z}, where $z \leq n$. Each block B_{k} can be completely defined by the first level job J_{a} and a set of second level jobs $\left\{J_{a 1}, \ldots, J_{a k}\right\}$, where inequality $p_{a} \geq s_{a 1}+\cdots+s_{a k}+p_{a 1}+\cdots+$ $p_{a k}$ holds, see Fig. 1.

For example, for the schedule given in Fig. 2, we can define the four blocks B_{1}, B_{2}, B_{3}, and B_{4}. The block B_{1} is defined by the first level job J_{1} and by the second level job $\left\{J_{2}\right\}$; the block B_{2} is defined by the first level job J_{3} and by the second level job $\left\{J_{4}\right\}$; the block B_{3} is defined by the first level job J_{5} and an empty set of second level jobs; the block B_{4} is defined by the first level job J_{6} and by the second level jobs $\left\{J_{7}, J_{8}\right\}$.

Thus, the model that we suggest is based on the fact that any schedule can be decomposed into a set of blocks. The variable $B_{k, f, j}$

| s_{a} | p_{a} | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $s_{a 1}$ | $p_{a 1}$ | \cdots | $s_{a k} \mid p_{a k}$ |

Fig. 1. Each block can be completely defined by the first level job J_{a} and a set of the second level jobs $\left\{J_{a 1}, \ldots, J_{a k}\right\}$.

s_{1}	p_{1}			s_{4}	p_{4}	s_{5}	p_{5}	s_{7}	p_{7}	s_{8}	p_{8}
	s_{2}	p_{2}	s_{3}		p_{3}		s_{6}		p_{6}		

Fig. 2. A schedule with four blocks.
is used for a block. We have $B_{k_{\cdot}, j}=1$ if job J_{j} is scheduled in level f in the k-th block, otherwise $B_{k, f, j}=0$. The index $k=1, \ldots, n$ indicates the serial number of the block. The index $f \in\{1,2\}$ indicates the level, i.e., we have $f=1$ if the level is the first one, and $f=2$ if the level is the second one. The index $j=1, \ldots, n$ indicates the job.

Each job belongs to some block, i.e., for any $j=1, \ldots, n$, the equality
$\sum_{k=1}^{n} \sum_{y=1}^{2} B_{k, y, j}=1$
holds. There is only one job of the first level for each block, i.e., for each $y=1$ and for any $k=1, \ldots, n$, the inequality
$\sum_{j=1}^{n} B_{k, 1, j} \leq 1$
holds.
Since all blocks are given, we define the following data for each block B_{k}, where $k=1, \ldots, n$:

- The loading part of the block B_{k} has the length $S T_{k} \geq 0$, formally inequality
$S T_{k} \geq \sum_{j=1}^{n} s_{j} B_{k, 1, j}$
holds.
- The objective part of the block B_{k} has the length $\sum_{j=1}^{n}$ $\left(s_{j}+p_{j}\right) B_{k, 2, j}$.
- The processing part of the block B_{k} has the length $P T_{k} \geq 0$, formally inequality
$P T_{k} \geq \sum_{j=1}^{n} p_{j} B_{k, 1, j}-\sum_{j=1}^{n}\left(s_{j}+p_{j}\right) B_{k, 2, j}$
holds.
Thus, each block is composed of three parts: loading, objective, and processing.

We add the objective part to the objective function and delete it from the block. After deleting the objective part from each block, the schedule can be considered as a set of modified jobs J_{k}^{\prime} with the setup time $S T_{k}$ and the processing time $P T_{k}$. The jobs J_{k}^{\prime}, $k=1, \ldots, n$, are scheduled in staggered order, i.e., job J_{1}^{\prime} is scheduled on the first machine, job J_{2}^{\prime} is scheduled on the second machine, job J_{3}^{\prime} is scheduled on the first machine, job J_{4}^{\prime} is scheduled on the second machine, and so on.

In Fig. 2, we have a schedule consisting of four blocks.

- For the first block we have $B_{1,1,1}=1$, i.e., J_{1} is the first level job, and $B_{1,2,2}=1$, i.e., J_{2} is the second level job. The modified job J_{1}^{\prime} has the loading part $S T_{1}=s_{1}$ and the processing part $P T_{1}=p_{1}-s_{2}-p_{2}$.
- For the second block we have $B_{2,1,3}=1$, i.e., J_{3} is the first level job, and $B_{2,2,4}=1$, i.e., J_{4} is the second level job. The modified job J_{2}^{\prime} has the loading part $S T_{2}=S_{3}$ and the processing part $P T_{2}=p_{3}-S_{4}-p_{4}$.
- For the third block we have $B_{3,1,5}=1$, i.e., J_{5} is the first level job, and there are no second level jobs in this block. The modified job J_{3}^{\prime} has the loading part $S T_{3}=S_{5}$ and the processing part $P T_{3}=p_{5}$.
- For the fourth block we have $B_{4,1,6}=1$, i.e., J_{6} is the first level job, and there are two jobs J_{7} and J_{8} of the second level, i.e., $B_{4,2,7}=1$ and $B_{4,2,8}=1$. The modified job J_{4}^{\prime} has the loading part $S T_{4}=S_{6}$ and the processing part $P T_{4}=p_{6}-S_{7}-p_{7}-S_{8}-p_{8}$.

The jobs $J_{1}^{\prime}, J_{2}^{\prime}, J_{3}^{\prime}, J_{4}^{\prime}$ are processed alternately on the two machines.
Formally, if we denote by $s t_{j}$ the starting time of each modified job J_{j}^{\prime}, then $s t_{1}+S T_{1} \leq s t_{2}, s t_{2}+S T_{2} \leq s t_{3}$, and so on, i.e., inequality $s t_{j}+S T_{j} \leq s t_{j+1}$
holds for each $j=1, \ldots, n-1$;
$s t_{1}+S T_{1}+P T_{1} \leq s t_{3}, \quad s t_{2}+S T_{2}+P T_{2} \leq s t_{4}, \quad$ and \quad so \quad on, i.e., inequality
$s t_{j}+S T_{j}+P T_{j} \leq s t_{j+2}$
holds for each $j=1, \ldots, n-2$.
We denote by F the total length of the modified schedule, i.e., inequality
$F \geq s t_{n}+S T_{n}+P T_{n}$
holds, and inequality
$F \geq s t_{n-1}+S T_{n-1}+P T_{n-1}$
holds.
For each job J_{j}, the integer number $\operatorname{ch}[j]$ is introduced with the following meaning. If J_{j} is the first level job for some block B_{x}, then $c h[j]$ denotes the maximal number of second level jobs for the same block. Formally, one can write
$B_{x, 2,1}+\cdots+B_{x, 2, n} \leq \operatorname{ch}[1] B_{x, 1,1}+\cdots+\operatorname{ch}[n] B_{x, 1, n}$
The objective function is
$F+\sum_{x=1}^{n} \sum_{j=1}^{n}\left(s_{j}+p_{j}\right) B_{x, 2, j}$.
Since any schedule can be decomposed into a set of blocks, the following theorem holds.

Theorem 1. Any schedule s can be described as a feasible solution of system (2.1)-(2.8) and as a feasible solution of system (2.1)-(2.9), respectively. In both cases, equality
$C_{\max }(s)=F+\sum_{x=1}^{n} \sum_{j=1}^{n}\left(s_{j}+p_{j}\right) B_{x, 2, j}$
holds.
Now, to prove the equivalence between the scheduling problem $P 2, S 1 \| C_{\max }$ and the models (2.1)-(2.8) and (2.1)-(2.9), respectively, one has to prove the following theorem.

Theorem 2. Any feasible solution of system (2.1)-(2.8) and any feasible solution of system (2.1)-(2.9), respectively, can be described as a feasible schedule for the problem $P 2, S 1 \| C_{\max }$. In both cases, equality
$F+\sum_{x=1}^{n} \sum_{j=1}^{n}\left(s_{j}+p_{j}\right) B_{x, 2, j}=C_{\max }(s)$
holds.
Proof. Suppose that we have some feasible solution of system (2.1)-(2.8). Using the values $s t_{j}, S T_{j}$ and $P T_{j}$, one can reconstruct the schedule s^{\prime} for the set of modified jobs $J_{1}^{\prime}, J_{2}^{\prime}, \ldots, J_{n}^{\prime}$. Since all these jobs are scheduled in staggered order, it is sufficient to consider only the following three cases for the possible scheduling of two adjacent jobs, say J_{j}^{\prime} and J_{j+1}^{\prime}.

https://daneshyari.com/en/article/6892979

Download Persian Version:
https://daneshyari.com/article/6892979

Daneshyari.com

[^0]: * Corresponding author. Tel.: +49391 6712025; fax: + 493916711171.

 E-mail address: frank.werner@mathematik.uni-magdeburg.de (F. Werner).

