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a b s t r a c t

We focus on the problem of partitioning the vertex set of a directed, edge- and vertex-weighted graph
into clusters, i.e., disjoint subsets. Clusters are to be determined such that the sum of the vertex weights
within the clusters satisfies an upper bound and such that the sum of the edge weights within the
clusters is maximized. Additionally, the graph is enforced to partition into a directed, acyclic graph where
the clusters define the vertices. This problem is known as the acyclic partitioning problem and is
NP-hard. Real-life applications arise, for example, in VLSI design and at rail–rail transshipment yards.
We propose an integer programming formulation for the acyclic partitioning problem and suggest an
exact solution approach based on a branch-and-bound framework that integrates constraint propagation.
Computational results are reported to confirm the strength of our solution proposal.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider a variant of the classical graph
partitioning problem, or simply partitioning problem, where the
vertex set of an edge-weighted graph is to be partitioned into k
disjoint subsets (also referred to as clusters), such that the sum of
the edge weights within the clusters is maximized (or equivalently
the sum of the edge weights between different clusters is mini-
mized). The acyclic partitioning problem, defined on a directed,
edge-, and vertex-weighted graph, additionally restricts the size of
the clusters and enforces the graph to partition into a directed,
acyclic graph, i.e., a graph that contains no directed cycle. The
acyclic partitioning problem belongs to the class of NP-hard
problems and remains NP-hard even if all vertex weights and all
edge weights are equal to 1, cf. [1].

Graph partitioning problems subject to additional constraints
arise in a wide area of applications, including VLSI (Very Large Scale
Integration) design [2], qualitative data analysis [3,4], computer
register allocation [5], and finite element computation [6]. The
problem instances that have motivated this research are encountered
at rail–rail transshipment yards where gantry cranes allow for an
efficient transshipment of containers between different freight trains.
A rail–rail transshipment yard is typically operated in a so-called
train bundle which is a set of trains that simultaneously enters the
transshipment yard. This train bundle is then served by cranes within
a certain time slot and jointly leaves the yard only after all container
transshipments have been processed. An important problem that

emerges during the daily operations is the train scheduling problem
[7] which decides on the bundling of trains under the objective to
minimize the number of split moves and train revisits to the yard. Split
moves appear whenever containers have to be exchanged between
trains of different bundles, whereas revisits occur if a train has to
enter the yard twice, because some container dedicated to this train
was not available during its first visit. A modification of this problem
forbids train revisits and solely meets the objective to minimize the
number of crane movements. This outlined problem can be modeled
as an acyclic partitioning problem.

A considerable amount of literature has been published on
graph partitioning problems. These studies investigate different
problem variants, as well as different solution approaches. Var-
iants of the partitioning problem, e.g., restrict the number of
clusters k, the size of the clusters, or are defined on specific graph
topologies. Specifications include the bi-partitioning (k≔2), the
node-capacitated partitioning, as well as the hypergraph partition-
ing. For references to these and other related problems we refer, e.
g., to Alpert and Kahng [2]. Solution algorithms are based on local
search approaches, clustering methods, geometric representations,
and combinatorial formulations. We only mention some of these
solution approaches and refer the reader to the detailed algorithm
surveys by Alpert and Kahng [2] and Fjällström [8]. Most promi-
nent is the variable depth search algorithm by Kernighan and Lin
[9] for bi-partitioning problems. Fiduccia and Mattheyses [10]
modify this algorithm by restricting cluster exchanges to single
vertices and Sanchis [11] adapt the Fiduccia–Mattheyses algorithm
to general graph partitioning problems.

A problem that is closely related to the acyclic partitioning
problem is known in the literature as the clique partitioning
problem. This problem is to partition the vertex set of an undir-
ected graph with real-valued edge weights into cliques, i.e.,
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complete subgraphs, such that the sum of the edge weights within
the clusters is maximized. Grötschel and Wakabayashi [4] analyze
the polyhedral structure of the clique partitioning polytope and
develop a cutting plane solution approach [3]. Oosten et al. [12]
extend the cutting plane method of Grötschel and Wakabayashi
[3,4] by defining further facet-defining inequalities. An ejection
chain heuristic, as well as an exact solution method based on a
branch-and-bound framework are presented by Dorndorf and
Pesch [13] for the same problem. Jaehn and Pesch [14] suggest
new bounds, a different branching strategy, and an accelerated
constraint propagation for the branch-and-bound algorithm of
Dorndorf and Pesch [13].

Another further related problem is the node-capacitated partition-
ing problem which imposes so-called knapsack constraints on the
clusters of an edge- and vertex-weighted graph to restrict the sum of
the vertex weights within the clusters. Holm and Sørensen [15]
consider the problemwhere the number of clusters k is prespecified.
They implement a branch-and-cut algorithm that includes cuts to
reduce the symmetric nature of the suggested problem formulation
in order to keep the size of the branch-and-bound tree as small as
possible. Johnson et al. [16] suggest an augmented set partitioning
formulation for the same problem and solve it by a branch-and-price
approach. The pricing problem is thereby solved by a branch-and-cut
algorithm. Mehrotra and Trick [17] also address this problem by a
branch-and-price method and solve the subproblem as combinator-
ial optimization problem. Ferreira et al. [18] suggest a multi-cut
formulation for the node-capacitated partitioning problem and
provide several cutting planes which they embed in Ferreira et al.
[6] in a branch-and-cut framework. Ji and Mitchell [19] consider the
clique partitioning problem where each clique is constrained to hold
a minimum number of vertices. They suggest a branch-and-price-
and-cut method to solve this problem class.

The literature on the acyclic partitioning problem, however, is
rather limited. Lukes [20] presents a pseudo-polynomial time algo-
rithm for the acyclic partitioning problem on a tree graph topology.
If all edge weights [21], equivalently, if all vertex weights [1] are
equal, the acyclic partitioning problem on trees can even be solved in
polynomial time. Cong et al. [22] modify the partitioning algorithm
by Sanchis [11] to heuristically solve the acyclic partitioning problem
on directed graphs with unit vertex and unit edge weights. The
authors randomly generate initial solutions based on topological
ordered vertices and restrict the vertex exchanges to those that
maintain the acyclic property, i.e., a topological vertex order.
A precise definition of a topological ordered graph is presented in
Section 3.

The main contribution of our work is the presentation of an
exact solution algorithm, as well as an integer model formulation
for the acyclic partitioning problem on directed graphs with non-
negative, integer vertex and edge weights. Our suggested algo-
rithm is based on a thorough problem analysis and a branch-and-
bound framework. To our knowledge this is the first attempt to
exactly solve the acyclic partitioning problem on directed graphs.

The remainder of the paper is organized as follows. In Section 2,
we give an overview of the notation used in this paper, a detailed
problem description, and an integer model formulation. A thorough
problem analysis of the acyclic partitioning problem is followed in
Section 3. The customized components of our branch-and-bound
algorithm are discussed in Section 4. In Section 5, we summarize
the results of our computational study which we conduct on
randomly generated instances. Finally, we conclude our research
in Section 6.

2. Notation, problem definition, model formulation

The following notation is used throughout the paper and
follows standard combinatorial optimization books such as Korte
and Vygen [23] and Schrijver [24]. Let D¼ ðV ;AÞ denote a directed
graph (or simply digraph) with vertex set V ¼ fv1;…; vng and edge
set ADfðvi; vjÞjvi; vjAVg. The considered digraph D is assumed to
be finite, loopless, and without multiple edges. Throughout the
paper n denotes the number of vertices (n≔jV j) and m the number
of edges ðm≔jAjÞ. We associate with each vertex viAV a vertex
weight wiANþ and with each edge ðvi; vjÞAA an edge weight
cijANþ .

A directed walk (or simply walk) of a digraph D is defined
as a sequence of edges W ¼ ððvi; viþ1Þ; ðviþ1; viþ2Þ;…; ðvj�2; vj�1Þ;
ðvj�1; vjÞÞ. If vertices vi;…; vj are all distinct, the walk is called a
directed path (or simply path). If vi ¼ vj and vi;…; vj�1 are all
distinct, we refer to a walk as a directed cycle (or simply cycle).
A digraph that contains no directed cycle is referred to as an acyclic
digraph and a digraph with at least one directed cycle is referred to
as a cyclic digraph.

A partition P ¼ fV1;…;Vkg of a digraph D is defined as the
collection of k disjoint subsets (i.e., clusters) of vertices, V1;…;Vk,
such that ⋃s ¼ 1;…;kVs ¼ V and Vs \ Vt ¼∅ for all s; t ¼ 1;…; k and
sat. The set of edges connecting vertices of different clusters is
called a cut and is denoted by δðPÞ≔fðvi; vjÞAAjviAVs; vjAVt ; s;
t ¼ 1;…; k; satg. The sum of the edge weights defined within the
clusters is denoted as the value of a partition, i.e., valueðPÞ≔

Fig. 1. Partition and acyclic partition. (a) Digraph, (b) acyclic partition and (c) partition.
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