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a b s t r a c t

We present an exact algorithm for the bilevel mixed integer linear programming (BMILP) problem under
three simplifying assumptions. Although BMILP has been studied for decades and widely applied to
various real world problems, there are only a few BMILP algorithms. Compared to these existing ones, our
new algorithm relies on fewer and weaker assumptions, explicitly considers finite optimal, infeasible,
and unbounded cases, and is proved to terminate finitely and correctly. We report results of our
computational experiments on a small library of BMILP test instances, which we created and made
publicly available online.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

We present an exact algorithm for the bilevel mixed integer
linear programming (BMILP) problem under three simplifying
assumptions:

max
x;y

ζ¼ c> xþ d>
1 y ð1Þ

s:t: A1xþ B1yrb1 ð2Þ

0rxrX ð3Þ

xiAZ; 8 iA I ð4Þ

yAargmax
~y

fd>
2 ~y : A2xþ B2 ~yrb2; ~yZ0; ~yjAZ; 8 jA Jg: ð5Þ

where A1ARm1�n1 , A2AZm2�n1 , B1ARm1�n2 , B2ARm2�n2 , b1ARm1�1,
b2ARm2�1, cARn1�1, d1ARn2�1, d2ARn2�1, I¼ f1;…;n1g, JD
f1;…;n2g, and XARn1�1. Compared to the general BMILP formula-
tion, our definition of the BMILP problem contains three simplifying
assumptions.

Assumption 1. All variables in vector x are required to be integral:
I ¼ f1;…;n1g.

Assumption 2. All variables in vector x have known bounds:
0rxrX.

Assumption 3. Matrix A2 is integral: A2AZm2�n1 .

The BMILP model we try to solve belongs to the category of bilevel
optimization, which has been studied for decades. Pioneers of bilevel
optimizationmodels include Bracken andMcGill [11–13], Aiyoshi [1,2],
Bard [5], and Candler [14], among others. Most early studies [8–
10,27,39] focused on the simpler case of bilevel linear program. Since
the 1990s, there has been increased attention on more complex
models with nonlinear terms [6,4,21,22] or discrete decision variables
[7,19,32,38]. Comprehensive reviews of existing bilevel optimization
algorithms and applications can be found in [15,37].

Bilevel optimization models have been applied to solve a variety
of real world problems, in which the hierarchical structure of
decision making widely exists. These applications include revenue
management [17], network design [16], national security [36], net-
work interdiction [30,33,41], national agriculture planning [25], and
decentralized management of multidivisional firms [3].

Despite its broad applications, BMILP is intrinsically hard to solve,
both theoretically and computationally. This can be epitomized by
the following two-dimensional example from [28].

Example 1.

sup
x;y

ζ ¼�xþ y

s:t: 0rxr1
yAargmax

~y
f� ~y : 0r ~yr1; ~yZx; ~yAZg:

It can be easily checked that: (i) the bilevel feasible region is non-
convex and disconnected, consisting of the point ð0;0Þ and the
line segment between ð0;1Þ and ð1;1Þ, including ð1;1Þ but exclud-
ing ð0;1Þ; (ii) the supremum of ζ is 1, but it is not attainable; and
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(iii) the optimal objective value of the continuous relaxation,
which is 0, fails to provide an upper bound for ζ. These special
properties are unique to the hierarchical structure of the bilevel
problems, which place significant challenges to designing exact
and efficient BMILP algorithms.

The literature on BMILP algorithms is scarce. In their seminal
work [32], Moore and Bard presented the first branch-and-bound
algorithms for BMILP under several simplifying assumptions.
Under the condition that either I ¼ f1;…;n1g or J ¼∅, they proved
that the algorithms can find an optimal solution if one exists. An
example is provided to show that if the upper level contains
continuous variables and the lower level discrete ones, then the
supremum of the BMILP may not be attainable even if it finitely
exists. The authors published another branch-and-bound algo-
rithm in [7], which solves a more restricted model with m1 ¼ 0,
xAf0;1gn1 , and yAf0;1gn2 . They pointed out that “it cannot be
determined whether the algorithm terminates with the optimum.”
DeNegre and Ralphs [19] invented a BMILP algorithm under the
assumptions that I ¼ f1;…;n1g, J ¼ f1;…;n2g, and B1 ¼ 0m1�n2 .
A Benders decomposition method is proposed in [35]. Genetic
algorithms and Tabu search methods for BMILP are presented in
[34,40], respectively. Relevant literature also includes [18,28]. In
[28], the authors proved the existence of an algorithm that solves
BMILP in polynomial time when n2 is fixed, referring to parametric
integer programming approaches [23]. Several bilevel discrete
nonlinear programming algorithms [20,24,26,29,31] have also
been proposed, which rely on additional simplifying assumptions
to achieve convergence or ϵ-convergence.

The algorithm we present here, which will be referred to as
AlgBMILP, differs from the previous ones in the following four
aspects. First, we allow the B1 matrix to be nonzero. As a result,
obtaining a bilevel feasible solution is no longer straightforward.
This point will be further explained in Section 2.1. Nevertheless,
allowing for nonzero B1 could be practically imperative, because in
many real world situations (such as in the energy market) the
consequences of the lower level's decisions (such as emissions
resulting from energy generation) must be taken into account by
the upper level in explicit constraints (such as environmental
policy design goals). Second, we allow the lower level to have both
continuous and discrete variables. Third, we explicitly consider all
possible outcomes of a BMILP, be it infeasible, unbounded, or finite
optimal. Fourth, we prove that our algorithm will finitely termi-
nate with the correct output. The three simplifying assumptions
are necessary for our algorithm. The first one is to avoid the case of
unattainable supremum, the second one is to ensure finite
termination, and the third one is to eliminate unavoidable round-
ing errors from computer representation of irrational numbers.

The rest of the paper is organized as follows. We motivate and
present the algorithm in Section 2 and report results from
computational experiments in Section 3. Discussion and conclud-
ing remarks are made in Section 4.

2. An exact BMILP algorithm

2.1. Definitions and preliminaries

In this section, we introduce some definitions that will be used
in the algorithm. We use a vector with a subscript j to refer to the
jth element of the vector. We define R ¼R [ fþ1g [ f�1g as the
set that includes all real numbers as well as positive and negative
infinity. For a given parameter x, we define LðxÞ as the following
parametric MILP (6)–(8), referred to as the lower level problem
(LLP):

max
y

d>
2 y ð6Þ

s:t: A2xþ B2yrb2 ð7Þ

yZ0; yjAZ; 8 jA J: ð8Þ
For a given set of parameters ðlAR

m2�1
;uAR

m2�1
;wARÞ, we

define Bðl;u;wÞ as the following parametric BMILP problem:

max
x;y

ζ ¼ c> xþ d>
1 y ð9Þ

s:t: A1xþ B1yrb1 ð10Þ

lrA2xru ð11Þ

d>
2 yZw ð12Þ

0rxrX ð13Þ

xAZn1�1 ð14Þ

yAargmax
~y

fd>
2 ~y : A2xþ B2 ~yrb2; ~yZ0; ~yjAZ; 8 jA Jg: ð15Þ

For a given set of parameters ðlAR
m2�1

;uAR
m2�1

;wARÞ, we
define Hðl;u;wÞ as the following parametric MILP (16)–(24),
referred to as the high point problem (HPP):

max
x;y

c> xþ d>
1 y ð16Þ

s:t: A1xþ B1yrb1 ð17Þ

A2xþ B2yrb2 ð18Þ

lrA2xru ð19Þ

d>
2 yZw ð20Þ

0rxrX ð21Þ

xAZn1�1 ð22Þ

yZ0 ð23Þ

yjAZ; 8 jA J: ð24Þ
The term “high point problem” was first used in [10] for bilevel
linear program and then in [32] for BMILP, although our definition
(16)–(24) is different from theirs.

A solution (x,y) is called LLP optimal if y is an optimal solution
to LðxÞ. For a given HPP Hðl;u;wÞ, a solution (x,y) is called HPP
feasible/optimal if (x,y) is a feasible/optimal solution to Hðl;u;wÞ.
For a given BMILP Bðl;u;wÞ, a solution (x,y) is called bilevel feasible
if it satisfies Constraints (10)–(15). A solution is called bilevel
infeasible if it is not bilevel feasible. One can verify from the above
definitions that a solution is bilevel feasible if and only if it is both
HPP feasible and LLP optimal. A solution ðxn; ynÞ is called bilevel
optimal if it is bilevel feasible and we have c> xn þ d>

1 ynZc> x0 þ
d>
1 y0 for any other bilevel feasible solution ðx0; y0Þ. A BMILP

instance is called optimal if it possesses (uniquely or not) a finite
optimal solution. A BMILP instance is called infeasible if a bilevel
feasible solution does not exist. A BMILP instance is called
unbounded if for any real number K there exists a bilevel feasible
solution ðxK ; yK Þ such that c> xK þ d>

1 yK ZK .
We clarify that in (5), the symbol “argmaxfg” refers to the set of

optimal solutions of the problem enclosed in the braces, which is
the LLP LðxÞ. If the LLP is infeasible or unbounded, then this set is
empty; otherwise this set contains all LLP optimal solutions. The
formulation (1)–(5) reads that when the lower level possesses
multiple optimal solutions the upper level gets to pick. This is
commonly referred to as the optimistic formulation. In contrast,
there is also the pessimistic formulation of BMILP, which allows
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