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a b s t r a c t

We study a generalization of the relaxation scheme for mathematical programs with equilibrium

constraints (MPECs) studied in Steffensen and Ulbrich (2010) [31] to equilibrium problems with

equilibrium constraints (EPECs). This new class of optimization problems arise, for example, as

reformulations of bilevel models used to describe competition in electricity markets. The convergence

results of Steffensen and Ulbrich (2010) [31] are extended to parameterized MPECs and then further

used to prove the convergence of the associated method for EPECs. Moreover, the proposed relaxation

scheme is used to introduce and discuss a new relaxed sequential nonlinear complementarity method

to solve EPECs. Both approaches are numerically tested and compared to existing diagonalization and

complementarity approaches on a randomly generated test set.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In 1950 Nash introduced in [21,22] the noncooperative Nash

game which is used to model the situation where J players try to
find their optimal strategy according to their strategy sets and their
own pay-off functions. These, however, depend on the other
players’ chosen strategies. A strategy combination, where no player
can improve his own strategy as long as all the other players stick
to their strategy is called a Nash equilibrium. The so-called Stack-

elberg game [29] is similar to the Nash game, however, there exists
one distinct player (the leader), that dominates all the other players
(the followers) playing a Nash game among each other.

EPECs are a special variant of the general Nash game that can
be regarded as an extension of the classical Stackelberg game,
where more than just one distinct player exist (the leaders) and all
N (N41) leaders dominate a second set of players (the followers).
Moreover, not only the followers, but also the leaders play a
noncooperative Nash game among each other. In this sense EPECs
might also be called Bilevel games, where each player of the
upper-level Nash game has to solve a Bilevel Program. Hence, the
problem is to find a Nash equilibrium of the leading players’
strategies x ¼ ðx1, . . . ,xNÞ, where each of the leaders’ strategies
xi ði¼ 1, . . . ,NÞ solves

min
xi ,y

f iðxi,x�i,yÞ

s:t: xiAXiðx�iÞ,

yASðxi,x�iÞ, ð1Þ

where x�i :¼ ðx1, . . . ,xi�1,xiþ1, . . . ,xNÞ, i.e. x�i denotes the vector of
the other players’ strategies, Xi denotes the strategy set of player i

(that might also depend on the other players’ strategies),
y denotes the vector of the followers’ strategies and Sðxi,x�iÞ

denotes the solution set of the followers’ Nash game that is
parameterized by the leaders’ strategies. Often, the so-called
equilibrium constraint yASðxi,x�iÞ can be replaced by a so-called
variational inequality (for more informations on VIs see e.g. [9]).
In this case (1) belongs to the class of mathematical programs with

equilibrium constraints (MPECs) (cf. also the monographs on
MPECs [20,17]).

If all feasible sets are determined by equalities and inequalities,
i.e. the feasible set Xiðx�iÞ is given by

hiðxi,x�i,yÞ ¼ 0 and giðxi,x�i,yÞZ0

and the lower level problems of the j¼ 1, . . . ,J followers are
given by

min
yj

Fjðxi,x�i,yÞ

s:t: Cj
hðxi,x�i,yÞ ¼ 0,

Cj
gðxi,x�i,yÞZ0,

with appropriately chosen dimensions and y¼ ðy1, . . . ,yJÞ, then
problem (1) is of the form of a standard Bilevel Program

min
xi ,y

f iðxi,x�i,yÞ

s:t: giðxi,x�i,yÞZ0,

hiðxi,x�i,yÞ ¼ 0,
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yj solves

min
yj

Fjðxi,x�i,yÞ

s:t: Cj
hðxi,x�i,yÞ ¼ 0,

Cj
gðxi,x�i,yÞZ0,

8>>><
>>>: 8j¼ 1, . . . ,J ð2Þ

(for more informations on Bilevel Programs see e.g. the monographs
[1,3]). Hence the Bilevel game is the problem of finding a strategy
vector ðx,yÞ that satisfies

ðxi,yÞ solves

min
xi ,y

f iðxi,x�i,yÞ

s:t: giðxi,x�i,yÞZ0,

hiðxi,x�i,yÞ ¼ 0,

yj solves ðj¼ 1, . . . ,JÞ

min
yj

Fjðxi,x�i,yÞ

s:t: Cj
hðxi,x�i,yÞ ¼ 0,

Cj
gðxi,x�i,yÞZ0,

8>>><
>>>:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

8 i¼ 1, . . . ,N:

Such games are sometimes also called multi-leader-(identical)-fol-

lower games [10,19,30] and used for example to model the strategic
behaviour of the participants in deregulated electricity markets
[16,15,19].

Unfortunately, in many instances the existence of equilibria of
these games is not guaranteed. Hence, one might consider a
model and attempt to solve the associated equilibrium problem
that might very well have no solution. Studies that examined such
questions can e.g. be found in [10,18].

Under suitable regularity conditions, the lower-level problems,
can be replaced by their first order optimality conditions. This
approach then results in a so-called equilibrium problem with

equilibrium constraints (EPECs) of the form (here to support ease of
reading we already concatenated all KKT conditions of the lower
level problems)

ðx,y,u,vÞ solves

min
xi ,y,ui ,vi

f iðxi,x�i,y,ui,viÞ

s:t: giðxi,x�i,y,ui,viÞZ0,

hiðxi,x�i,y,ui,viÞ ¼ 0,

ðy,ui,viÞ solves

0¼ryFðxi,x�i,yÞ

�ryCgðxi,x�i,yÞ
T ui

þryChðxi,x�i,yÞ
T vi,

0¼ Chðxi,x�i,yÞ,

0rui ? Cgðxi,x�i,yÞZ0:

8>>>>>>><
>>>>>>>:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

8i¼ 1, . . . ,N ð3Þ

These problems are the main objective of this paper. In general, (3)
is a relaxation of the original Bilevel game, since the first order
optimality conditions are only necessary but not sufficient. How-
ever, if the lower-level problem is convex, both problems are
equivalent, since the KKT-conditions are necessary and sufficient
under suitable regularity assumptions.

To date only a few results on the theoretical level are available
in the literature (see e.g. [23,2,13] and the references therein).
Moreover, the research on suitable methods for EPECs has just
begun. The majority of algorithms proposed in the literature to
solve EPECs are based either on diagonalization techniques such
as Gauss–Jacobi or Gauss–Seidel methods [15,19,30] or on the
solution of a concatenated system of stationarity conditions.
Since here only one single nonlinear complementarity problem
(NCP) has to be solved these methods tend to be more efficient than
the diagonalization methods [15,19]. However, both of these studies
also report on disadvantages of the NCP approach, either in a lack of
efficiency (in terms of CPU times and/or iteration numbers) for large
scale problems [15] or in robustness [19], i.e. the percentage of
(solvable) problems solved. Another very recent paper [25] studies

the solution of an EPEC model for an oligopolistic electricity pool.
Therein the EPEC is first reformulated as an NCP, however, due to
its structure, the NCP can be further transformed into a mixed
integer linear program (MILP) using a linearization without
approximation. The resulting MILP is then solved by some
standard Branch & Cut algorithm.

In this paper we propose a Gauss–Seidel method, where each
single-leader–follower game denoted as MPECðx�iÞ is solved using
the relaxation method for MPECs that is proposed in [31] and
proved to be successful in solving MPECs numerically. The
relaxation scheme is based on a reformulation of the comple-
mentarity constraints that is exact for the complementarity
conditions corresponding to sufficiently non-degenerate comple-
mentarity components and relaxes only the remaining comple-
mentarity conditions. Moreover, a positive parameter determines
to what extent the complementarity conditions are relaxed.

General assumptions and notations: We assume that all func-
tions involved in the original problem (i.e. f i, gi, hi, F, G,H) are
twice continuously differentiable with respect to all their argu-
ments (i.e. the variables x and y and the parameter vector a in
Section 2). The operator r denotes either the gradient or the
transposed Jacobian of the corresponding scalar or vector valued
function, respectively. We define the support of lARm as
suppðlÞ :¼ fjAf1, . . . ,mg : lja0g and use Rn

þ as notation for the
nonnegative orthant of Rn. Finally, we use the notation ðIG\IHÞðxÞ

for IGðxÞ\IHðxÞ and ðIG \ IHÞðxÞ for IGðxÞ \ IHðxÞ, respectively.
In the convergence analysis of our relaxation method we will

use a variant of the following constraint qualification that was
introduced for general NLPs in [24] and applied to MPECs in [12].

Definition 1.1. Let x̂ be feasible for the standard nonlinear
program

min
x

f ðxÞ

s:t: hðxÞ ¼ 0,

gðxÞZ0:

1. Let Kg D Igðx̂Þ, KhD Ihðx̂Þ (where IhðxÞ ¼ fi : hiðxÞ ¼ 0g and IgðxÞ ¼

fj : gjðxÞ ¼ 0g). We call the family of gradient vectors

frgjðx̂Þ : jAKgg [ frhjðx̂Þ : jAKhg

positive linearly dependent, if there exist vectors mAR9Kh9 and
lAR

9Kg9
þ with ðm,lÞa ð0;0Þ andX

iAKh

mirhiðx̂Þþ
X

jAKg

ljrgjðx̂Þ ¼ 0:

2. The CPLD (constant positive linear dependence constraint quali-

fication) is said to hold in x̂, if for every Kg D Igðx̂Þ, KhD Ihðx̂Þ,
such that the family of gradient vectors

frgjðx̂Þ : jAKgg [ frhjðx̂Þ : jAKhg

is positive linearly dependent, there exists a neighbourhood
Uðx̂Þ, such that for every yAUðx̂Þ the family

frgjðyÞ : jAKgg [ frhjðyÞ : jAKhg

is linearly dependent.

1.1. Preliminaries on MPECs

As we briefly illustrated, under some suitable conditions the
VI (or equilibrium constraint) of an MPEC can be replaced by a
so-called complementarity problem, that consists of a system
of (in)equalities and complementarity conditions. In this case
the MPEC is also referred to as a Mathematical program with
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