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a b s t r a c t

We address the dynamic lot-sizing problem considering multiple items and storage capacity. Despite we
can easily characterize a subset of optimal solutions just extending the properties of the single-item case,
these results are not helpful to design an efficient algorithm. Accordingly, heuristics are appropriate
approaches to obtain near-optimal solutions for this NP-hard problem. Thus, we propose a heuristic
procedure based on the smoothing technique, which is tested on a large set of randomly generated
instances. The computational results show that the method is able to build policies that are both easily
implemented and very effective, since they are on average 5% above the best solution reported by CPLEX.
Moreover, an additional computational experiment is carried out to show that the performance of this new
heuristic is on average better and more robust than other methods previously proposed for this problem.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most critical issue that should be tackled by a firm is
the determination of the procurement policy of the different goods
(spare parts, raw material, components or finished items) involved
in the supply chain. This problem becomes more complex whether
the demand for each of the N items varies with time through a
finite planning horizon with T periods. Accordingly, problems in
this category are usually referred to as multi-item dynamic lot-
sizing model. Generally speaking, three main aspects (criteria) can
influence on the replenishment decisions: cost minimizing, stra-
tegic (e.g., demand fulfillment) and limiting factors (e.g., storage
constraints). The cost minimizing is a primordial goal in most
economic activities since it usually entails profit increasing and
hence allows the firm to occupy a better position within a global
competitive environment. However, this goal can be in conflict
with the others two criteria. On the one hand, the unplanned
shortages can yield both additional costs due to backlogging
situations or interruptions of the production process and a loss
of customer's confidence. Furthermore, the decision maker should
keep in mind the storage limitations to ensure the procurement
quantities can be stored in the available space and hence to
guarantee the feasibility of the policy. The real-world applications
where this heuristic can be helpful are (Minner [11]): JRP (Joint
Replenishment Problems), Capacitated Lot-sizing and Scheduling
Problems, and Warehouse Scheduling Problems.

Wagner and Whitin [14] were the first to study the dynamic
version of the Economic Order Quantity (EOQ) model and since then
a significant number of papers has been published considering
diverse extensions. These variants have been successfully implemen-
ted in both dependent (vertical) and independent (horizontal)
demand systems (see, e.g., Brahimi et al.[3] and Robinson et al.
[12]). One of these extensions is credited to Love [10], who developed
a O(T3) procedure to optimally solve the single-item single-stage
dynamic lot size problemwith limited capacity at the warehouse and
general concave cost structure for the inventory, ordering and back-
logging operations. More recently, Gutiérrez et al. [8,9] introduced a
characterization to the optimality, which led to devise an algorithm
with the same theoretical complexity as that in Love, but with
running times almost 30% faster than the former. Furthermore, the
algorithm runs in O(T) expected time when the upper bound of the
demand at each period coincides with its storage capacity.

Contributions to the case with multiple items are quite sparse. For
instance, Dixon and Poh [4] proposed a smoothing approach, which
consists of determining independently the replenishment policy for
each product using any of the efficient algorithms proposed by
Argawal and Park [1], Federgruen and Tzur [5] or Wagelmans et al.
[13]. In a second step, if the inventory level at the end of period t
exceeds the storage capacity then, this infeasibility is corrected either
by postponing from period t to t+1 the corresponding procurement
quantity (PUSH operation) or by advancing the next replenishment for
an item (PULL operation). Moreover, Günther [6,7] devised a con-
structive approach, which consists of determining first lot-for-lot
policies and then successively increasing the replenishment quantities
for each item and period using an economic criterion as a discrimi-
nant. Inspired by the well-known savings algorithm for the vehicle
routing problem, Axsäter [2] introduced a heuristic approach for the
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dynamic lot-sizing problem, which consists of reducing the ordering
costs by combining consecutive replenishments in one batch when-
ever this operation represents a saving. These three approaches were
implemented and compared in a comprehensive article by Minner
[11], and the results show that both the constructive and the
smoothing techniques have an antagonistic behavior of the saving
approach. In other words, this last method is more robust than the
other two heuristics when demand variability increases and shows
smaller increases of deviations for variations of costs and capacity
parameters.

We address in this paper the problem of determining the near-
optimal ordering schedules for a set of items, which share a
common warehouse within an independent (horizontal) demand
system. Moreover, a characterization of a family of optimal solutions
is derived as a straightforward extension of that for the single-item
version in Gutiérrez et al. [8]. This characterization allows us to
develop an improved version of the PUSH operation proposed by
Dixon and Poh [4], where infeasibility is not only fixed postponing
the demand of only one period but the size of the deferred batch for
an item corresponds to either the sum of demands of consecutive
periods or a quantity enough to saturate the storage capacity.
Furthermore, this approach permits to devise an OðN2 T2 log TÞ
algorithm which provides reasonably good near-optimal solutions
that are on average 5% above the best solution achieved by CPLEX.

The remainder of the paper is organized as follows. In Section 2
we formulate the problem. The key results that allows to improve
the approach proposed by Dixon and Poh [4] and the heuristic
method are described in detail in Section 3. Moreover, the new
approach is illustrated with a simple example in Section 4. In
Section 5, we explain how the computational experiment has been
performed and computational results for several sets of randomly
generated instances are reported. Furthermore, and additional
computational experiment is carried out to show the good
performance of the new heuristic in comparison with other
methods previously proposed. Finally, in Section 6 we provide
some conclusions and final remarks.

2. Problem statement

We assume a set of N items independently demanded and a
planning horizon with T periods. For each item n and period t we
define the following parameters. Let dn;t , f n;t , pn;t and hn;t be
respectively the demand, the fixed setup cost, the production cost
and the carrying cost for item n in period t. Moreover, we denote
by Dn;t the accumulated demand of item n from periods t to T, that
is Dn;t ¼∑T

k ¼ tdn;k. Additionally, let St be the total dynamic inven-
tory capacity at the warehouse in period t and let wn be the unit
capacity (volume) of item n. On the other hand, for each item n
and period t, we define the following variables, the order quantity
xn;t replenished at the beginning of the corresponding period, the
binary variable yn;t which is equal to 1 if item n is ordered in
period t and 0 otherwise, and the inventory quantity In;t of item n
at the end of period t. Moreover, we assume that shortages are not
permitted and leadtimes are negligible. Thus, we can state the
following MIP problem:

min ∑
N

n ¼ 1
∑
T

t ¼ 1
f n;tyn;t þ pn;txn;t þ hn;t In;t ð1Þ

s:t: : In;0 ¼ In;T ¼ 0; n¼ 1;…;N ð2Þ

∑
N

n ¼ 1
wnðIn;t−1 þ xn;tÞ≤St ; t ¼ 1;…; T ð3Þ

In;t−1−In;t þ xn;t ¼ dn;t ; n¼ 1;…;N; t ¼ 1;…; T ð4Þ

xn;t ≤yn;tDn;t ; n¼ 1;…;N; t ¼ 1;…; T ð5Þ

xn;t ; In;t∈N0 ¼N∪0; yn;t∈f0;1g; n¼ 1;…;N; t ¼ 1;…; T ð6Þ

The terms in (1) represent, respectively, the total setup cost, the
total ordering cost and the total holding cost. The set of constraints
in (2) forces both the initial and final inventory level of the
planning horizon for each item to be zero. However, these
constraints can be dropped off without loss of generality since
the case of positive initial and/or final inventory can be adapted to
the formulation above just allocating initial inventories to
demands of the first periods and/or adding a required final
inventory to the demand of the last period. The second set of
constraints (3) ensures that the inventory level at the beginning of
each period does not exceed the warehouse capacity. The con-
straints in (4) are the well-known material balance equations and
those in (5) state the relationship between the order quantity and
its binary variable for each item and period. Finally, constraints in
(6) define the character of each variable.

3. The heuristic method

Among the different approaches proposed to obtain near-
optimal solutions to the problem above (see Minner [11]), we
focus our attention on that presented by Dixon and Poh [4]. These
authors devised a smoothing approach based on solving first a
relaxed version of the problem dropping off the constraint set in
(3). Thus, independent plans are obtained by solving N single-
product, dynamic uncapacitated lot-sizing problems. If infeasi-
bility occurs at the end of period t, the excess warehouse capacity
requirements can be reduced either by postponing an item
replenishment batch from period t to t+1 (PUSH operation) or
by advancing the next future replenishment (PULL operation).
However, Dixon and Poh claimed that on average the PUSH
operation is preferred to the PULL strategy since the impact of
the move on total costs is predictable. Moreover, we consider that
this approach has not been appropriately exploited since it just
moves the sum of demands of consecutive periods for several
items instead of filling the warehouse capacity. Accordingly, we
confine ourselves to analyze the PUSH operation but extending
the strategy to consider both postponements of orders for a
subset of items to nonconsecutive periods (i.e., from period t to
period t+k, k∈f1;…; T � tg, instead of t+1 only) and replenishment
quantities different from a sum of demands of consecutive
periods for an item. This last modification is supported by the
results in Gutiérrez et al. [8]. Specifically, the natural extension of
Theorem 1 in Gutiérrez et al. suggests that in each of the
production periods t (i.e., those periods for which xn;t≠0 for some
item n), the sum of both inventory and production quantities for
all items matches either the sum of demands of successive
periods, or the maximum storage capacity for that period. This
property is just a generalization of Theorem 1 in [8] to the multi-
item case, which can be formally stated in the following theorem.

Theorem 3.1. If t is a production period (xn;t≠0 for some item n),
then either In;t−1 þ xn;t ¼Dn;t−Dn;kn;t for some period kn;t4t or
∑N

n ¼ 1ðIn;t−1 þ xn;tÞ ¼ St .

Proof. For a contradiction, let us consider an optimal solution in
which there is an item n with non-zero production in period t
ðxn;t≠0Þ, for which In;t−1 þ xn;t4Dn;t−Dn;kn;t and In;t−1 þ xn;to
Dn;t−Dn;kn;tþ1, where kn;t∈ft þ 1;…; T−1g. Besides, let us admit that
∑N

n ¼ 1ðIn;t−1 þ xn;tÞoSt . From this point, we can easily proceed in the
samemanner than in the proof of Theorem 1 in Gutérrez et al. [8] to
ensure that either the current solution is not optimal or we can
construct an optimal plan satisfying the condition of the statement.
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