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a b s t r a c t

The concept of truncated position-based learning process plays a key role in production environments.
However, it is relatively unexplored in the flow shop setting. In this paper, we consider the flow shop
scheduling with truncated position-based learning effect, i.e., the actual processing time of a job is a
function of its position and a control parameter in a processing permutation. The objective is to minimize
one of the six regular performance criteria, namely, the total completion time, the makespan, the total
weighted completion time, the discounted total weighted completion time, the sum of the quadratic job
completion times, and the maximum lateness. We present heuristic algorithms and analyze the worst-
case bound of these heuristic algorithms. We also provide the computational results to evaluate the
performance of the heuristics.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Scheduling problems have received considerable attention for
many years. In traditional scheduling problems, most research
assumes that job processing times are known fixed values in
advance, however, there are many realistic settings, because firms
and employees perform a task over and over, they learn how to
perform more efficiently. The production facility (a machine, a
worker) improves continuously over time. As a result, the produc-
tion time of a given product is shorter if it is scheduled later, i.e.,
unit costs decline as firms produce more of a product and gain
knowledge or experience. This phenomenon is known as the
“learning effect” in the literature. Extensive surveys of different
scheduling models and problems involving jobs with learning
effects can be found in Biskup [2] and Janiak and Rudek [12]. More
recent papers which have considered scheduling jobs with learn-
ing effects include Wu et al. [38], Koulamas and Kyparisis [16],
Eren and Güner [5], Wang et al. [30], Xu et al. [42], Mosheiov and
Sarig [22], Janiak et al. [14], Lee and Wu [18], Janiak and Rudek
[13], Cheng et al. [3], Rudek [26], Mor and Mosheiov [19],
Mosheiov [20], Wang and Wang [31,32], Mosheiov and Oron

[21], Wu and Lee [35–37], Gerstl and Mosheiov [8], Wu et al.
[39], Lee [17], Wu et al. [40], Yin et al. [43], and Wu et al. [41].

However, subject to an uncontrolled learning effect, the actual
processing time of a job will plummet to zero precipitously as the
number of jobs increases in the job position-based learning model
proposed by Biskup [1]. Motivated by this observation, Wu et al.
[40] proposed a truncated position-based learning model where
the actual processing time of a job is a function of its position and
a control parameter, i.e., the actual processing time of Jj is defined
as pjr ¼ pj maxfra; ρg, where pj is a normal processing time of job Jj,
a≤0 is the learning index and ρ is a truncation parameter with
0oρo1. The use of the truncated function can be justified on the
grounds that learning, like other human activities, is limited. They
showed that even with the introduction of the proposed model to
job processing times, several single machine problems and two-
machine flows hop problems remain polynomially solvable. They
also analyzed the worst-case error bounds for the problems to
minimize the total weighted completion time, discounted total
weighted completion time and maximum lateness. To the best of
our knowledge, the concept of truncated position-based learning
process is relatively unexplored in flow shop environment. Wu
et al. [40] are the only authors to study the two-machine flow
shop problem under the assumption of truncated position-based
learning functions. In this paper we continue the work in Wu et al.
[40] considering flow shop scheduling problems with truncated
position-based learning effects. The objective is to minimize one of
the six regular performance criteria, namely, the total completion

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.07.001

n Corresponding author at: School of Science, Shenyang Aerospace University,
Shenyang 110136, China. Tel.: +86 24 89723548.

E-mail addresses: wxy5099@126.com (X.-Y. Wang),
wangjibo75@163.com (J.-B. Wang).

Computers & Operations Research 40 (2013) 2906–2929

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.07.001
http://dx.doi.org/10.1016/j.cor.2013.07.001
http://dx.doi.org/10.1016/j.cor.2013.07.001
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.07.001&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.07.001&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.07.001&domain=pdf
mailto:wxy5099@126.com
mailto:wangjibo75@163.com
http://dx.doi.org/10.1016/j.cor.2013.07.001
http://dx.doi.org/10.1016/j.cor.2013.07.001


time, the makespan, the total weighted completion time, the
discounted total weighted completion time, the sum of the
quadratic job completion times, and the maximum lateness. We
present heuristic algorithms with worst-case bound for each
criterion by utilizing the optimal permutations for the correspond-
ing single machine problems.

The remaining sections are organized as follows. In Section 2,
we give some general notations and assumptions. In Sections 3–8,
we propose heuristic algorithms with a worst-case bound for the
total completion time minimization, the makespan minimization,
the total weighted completion time minimization, the discounted
total weighted completion time minimization, the sum of the
quadratic job completion times minimization and the maximum
lateness, respectively. In Section 9, we give some well-known
heuristics. In Section 10, we present the computational experi-
ments. Conclusions and remarks are given in Section 11.

2. Notations and assumptions

The details of the flow shop scheduling with truncated
position-based learning effect are described as follows: A set of n
jobs J1; J2;…; Jn are to be processed on m continuously available
flow shop machines M1;M2;…;Mm. Each job Jj consists of chain
operations ðO1j;O2j;…;OmjÞ. Operation Oij has to be processed on
machine Mi; i¼ 1;2;…;m. The starting time of operation Oij must
be the larger one of the completion times of Oi�1;j and Oi;j�1 and all
machines process the jobs in the same permutation schedule.
As in Wu et al. [40], we consider the model of actual job processing
time pijr characterized by truncated position based learning func-
tion, i.e.,

pijr ¼ pij maxfra; ρg; i¼ 1;2;…;m; r; j¼ 1;2;…;n; ð2:1Þ

where pij denotes the (normal) processing time of operation Oij,
a≤0 is a learning ratio and ρ is a truncation parameter with 0≤ρ≤1.

Let Cij ¼ CijðSÞ be the completion time of operation Oij, Cj ¼ Cmj

be the completion time of job Jj, S¼ ðJ½1�; J½2�;…; J½n�Þ represent a
permutation of ð1;2;…;nÞ, where ½j� denotes the job that occupies
the jth position in S. The aim of this paper is to seek a sequence for
minimizing ∑n

j ¼ 1Cj (the total completion time), Cmax ¼maxfCjjj¼
1;2;…;ng (the makespan), ∑n

j ¼ 1wjCj (the total weighted comple-

tion time, where wj40 is a weight associated with job Jj),
∑n

j ¼ 1wjð1�e�γCj Þ (the discounted total weighted completion time,

where γ∈ð0;1Þ is the discount factor (see [24, Section 3.1])),

∑n
j ¼ 1C

2
j (the sum of the quadratic job completion times [29])

and Lmax ¼maxfLjjj¼ 1;2;…;ng (the maximum lateness), where dj
denote the due date of job Jj and Lj ¼ Cj�dj. According to the
standard three-field notation for scheduling problems [10], the
problem will be denoted as Fmjprmu; pijr ¼ pij maxfra; ρgjF ,
F∈f∑Cj;Cmax;∑wjCj;∑wjð1�e�γCj Þ;∑n

j ¼ 1C
2
j ; Lmaxg.

3. Worst-case behavior for the total completion time
minimization problem

3.1. Case for m¼2

Lemma 3.1. For the 1jpjr ¼ pj maxfra; ρgj∑Cj problem, an optimal
schedule is obtained by sequencing jobs in a non-decreasing order of
pj (i.e., the smallest processing time (SPT) first rule) [40].

For ease of exposition, we denote p1j by aj and p2j by bj. It is well
known that the F2jpijr ¼ pij maxfra; ρgj∑Cj problem is NP-complete
[7]. Hoogeveen and Kawaguchi [10] provided an SPT heuristic for

the F2jprmuj∑Cj problem, i.e., in order of non-decreasing Tj ¼
aj þ bj. From Hoogeveen and Kawaguchi [11] and Lemmas 3.1–3.3,
we can use the SPT (in order of non-decreasing Tj ¼ aj þ bj) rule as
an approximate algorithm for F2jprmu;pijr ¼ pij maxfra; ρgj∑Cj

problem. As in Gonzalez and Sahni [9], in examining “worst”
schedules, we restrict ourselves to busy schedules, i.e., a schedule
in which at all times from start to finish at least one machine is
processing an operation. Without loss of generality we assume
that T1≤T2≤⋯≤Tn.

Lemma 3.2. Let Sn be an optimal schedule. Then

2 ∑
n

j ¼ 1
CjðSnÞ≥ ∑

n

j ¼ 1
ðn�jþ 1Þðaj þ bjÞja þ ∑

n

j ¼ 1
bjna þ n min

1≤j≤n
fajg: ð3:1Þ

Proof. Consider any schedule S¼ ðJ½1�; J½2�;…; J½n�Þ, from C2½j� ¼max
fC2½j�1�;C1½j�g þ b½j�maxfja; ρg≥C2½j�1� þ b½j� maxfja; ρg, we have C ½j�≥a½1�
þ∑j

k ¼ 1b½k� maxfka; ρg, for j¼ 1;2;…;n; hence

∑
n

j ¼ 1
Cj≥na½1� þ ∑

n

j ¼ 1
∑
j

k ¼ 1
b½k� maxfka; ρg ¼ na½1� þ ∑

n

j ¼ 1
ðn�jþ 1Þb½j� maxfja; ρg:

ð3:2Þ

In addition, from C2½j� ¼maxfC2½j�1�;C1½j�g þ b½j� maxfja; ρg≥C1½j�
þb½j� maxfja; ρg, we have C½j�≥∑

j
k ¼ 1a½k� maxfka; ρg þ b½j� maxfja; ρg,

for j¼ 1;2;…;n; hence

∑
n

j ¼ 1
Cj≥ ∑

n

j ¼ 1
∑
j

k ¼ 1
a½k� maxfka; ρg þ ∑

n

j ¼ 1
b½j� maxfja; ρg

¼ ∑
n

j ¼ 1
ðn�jþ 1Þa½j� maxfja; ρg þ ∑

n

j ¼ 1
b½j� maxfja; ρg: ð3:3Þ

From Eqs. (3.2) and (3.3), we have

2 ∑
n

j ¼ 1
CjðSÞ≥ ∑

n

j ¼ 1
ðn�jþ 1Þða½j� þ b½j�Þmaxfja; ρg þ ∑

n

j ¼ 1
b½j� maxfja; ρg þ na½1�

≥ ∑
n

j ¼ 1
ðn�jþ 1Þðaj þ bjÞ maxfja; ρg þ ∑

n

j ¼ 1
bj maxfna; ρg þ n min

1≤j≤n
fajg;

as the term ∑n
j ¼ 1ðn�jþ 1Þða½j� þ b½j�Þ maxfja; ρg is minimized by the

SPT (in order of non-decreasing Tj ¼ aj þ bj) rule (Lemma 3.1). The
lemma follows immediately. □

Let δ¼minfa1; a2;…; an; b1; b2;…; bng maxfna; ρg and β¼max
fa1; a2;…; an; b1; b2;…; bng.

Lemma 3.3. We have that

jakþ1 maxfðkþ 1Þa; ρg�bk maxfka; ρgj≤ðβ�δÞðakþ1 maxfðkþ 1Þa; ρg
þ bk maxfka; ρgÞ=ðβ þ δÞ

for k¼ 1;2;…;n�1.

Proof. Case (1): Let jakþ1 maxfðkþ 1Þa; ρg� bk maxfka; ρgj ¼
akþ1 maxfðkþ 1Þa; ρg�bk maxfka; ρg for k¼ 1;2;…;n�1. Suppose
to the contrary that akþ1 maxfðkþ 1Þa; ρg�bk maxfka; ρg4
ðβ�δÞðakþ1 maxfðkþ 1Þa; ρg þ bk maxfka; ρgÞ=ðβ þ δÞ for some k. This
inequality can be rewritten as βbk maxfka; ρgoδakþ1

maxfðkþ 1Þa; ρg. Since, δakþ1 maxfðkþ 1Þa; ρgoδβ, we obtain the
contradiction that bk maxfka; ρgoδ.
Case (2): Let jakþ1 maxfðkþ 1Þa; ρg�bk maxfka; ρgj ¼ bk maxfka; ρg

�akþ1 maxfðkþ 1Þa; ρg for k¼ 1;2;…;n�1. The result can be
obtained similarly. □

Theorem 3.1. Let Sn be an optimal schedule and S be an SPT schedule
for the F2jprmu; pijr ¼ pij maxfra; ρgj∑Cj problem. Then ∑n

j ¼ 1CjðSÞ=
∑n

j ¼ 1CjðSnÞ≤2β=ðδþ βÞ, and this bound is tight.
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