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a b s t r a c t

This note is a sequel of paper (Escudero et al. (2012) [1]), in which the sequential Branch-and-Fix
Coordination referred to as the BFC-MS algorithm was introduced for solving large-scale multistage
mixed 0–1 optimization problems up to optimality under uncertainty. The aim of the note is to present
the parallelization version of the BFC algorithm, referred to as PC-BFCMS, so that the elapsed time
reduction on problem solving is analyzed. The parallelization is performed at two levels. The inner level
parallelizes the optimization of the MIP submodels attached to the set of scenario clusters that have been
created by the modeler-defined break stage to decompose the original problem, where the nonantici-
pativity constraints are partially relaxed. Several strategies are presented for analyzing the performance
of the inner parallel computation based on MPI (Message Passing Interface) threads to solve scenario
cluster submodels versus the sequential version of the BFC-MS methodology. The outer level of
parallelization defines a set of 0–1 variables, the combinations of whose 0–1 values, referred to as paths
(one for each combination), allow independent models to be optimized in parallel, such that each one
can itself be internally optimized with the inner parallelization approach. The results of using the outer–
inner parallelization are remarkable: the larger the number of paths and MPI threads (in addition to the
number of threads that the MIP solver allows to be used), the smaller the elapsed time to obtain the
optimal solution. This new approach allows problems to be solved faster, and, can thus solve very large
scale problems that could not otherwise be solved by plain use of a state-of the-art MIP solver, or could
not be solved by the sequential version of the decomposition algorithm in acceptable elapsed time.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic Optimization (SO) is broadly studied and applied in
today's real-world applications. Uncertainty is the key ingredient
in many decision problems. There are several ways in which
uncertainty can be formalized and over the past thirty years
different approaches to optimization under uncertainty have been
developed. The field of SO appeared as a response to the need to
incorporate uncertainty into mathematical optimization models.
Basically, it deals with situations in which some parameters are
random variables (i.e., coefficients in the objective function, the right
hand side vector (rhs) and the constraint matrix). It allows the risk
inherent into the random variables of the problem to be managed, or
at least partially managed, mainly in a time horizon environment.
The problem is formulated by the so-called Deterministic Equivalent

Model (DEM), a term coined by Wets [2]. See e.g., [1] and references
therein for some overviews on the state-of-the-art of two-stage and
multistage stochastic continuous and mixed integer optimization
algorithms.

In the general formulation of a multistage stochastic integer
optimization problem, decisions on each stage have to be made
stage-wise. At each stage, there are variables which correspond to
decisions that have to be made without anticipating future events,
i.e., the so-called nonanticipativity constraints must be satisfied,
see [3]. Moreover, there have been few attempts to solve large
scale general multistage stochastic mixed 0–1 models up to
optimality due to their complexity. In any case this type of
problems requires an intensive computing effort, even using
decomposition algorithms for problem solving. Parallel Computing
(PC) offers an alternative for solving very large scale problems by
parallelizing the solution of MIP submodels that appear in the
decomposition algorithms.

At hardware level, PC is currently mainly based on clusters and
multicore processors. For broad information, see [4,5], among
others. The nature of the cooperation between processors can
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differ depending on the way in which processors exchange informa-
tion. One of the parallel architectures is the message passing interface
(MPI) or distributed memory.

Over the last two decades some papers on SO have appeared in
the relevant literature that uses PC for two-stage and multistage
stochastic continuous and mixed 0–1 optimization, see e.g., [6–8]
and references therein.

The main objective of this note, as a sequel to paper [1], is to
present the parallelization version of the BFC-MS algorithm,
referred to as PC-BFCMS, so that the reduction in the elapsed time
in problem solving is analyzed. The parallelization is performed at
two levels. The inner level parallelizes the optimization of the MIP
submodels attached to the set of scenario clusters that have been
created by the modeler-defined break stage, say tn. The concept of
“break stage” was introduced in [1] as a way of decomposing the
original problem, in which the nonanticipativity constraints are
partially relaxed from the mixture of the splitting and compact
representations of the DEM of the stochastic problem. Several
strategies are presented for analyzing the performance of using
inner parallel computing based on MPI threads strategies for
solving scenario cluster based submodels versus the sequential
version of the BFC-MS methodology. The outer level of paralleliza-
tion defines a set of 0–1 variables, the combinations of whose 0–1
values, referred to as paths (one for each combination), enable
independent models to be optimized in parallel, such that each
one can itself be internally optimized with the inner paralleliza-
tion. The main results of a broad computational experience are
reported to assess whether the performance of the parallel
computing approach compares favorably to the sequential one.
The elapsed time required by outer–inner parallelization is very
frequently some orders of magnitude smaller than that of the
sequential version of the algorithm, depending on the computer
resources available. So, the larger the number of paths and MPI
threads (in addition to the number of threads that the MIP solver
allows to be used), the smaller the elapsed time for problem
solving.

The rest of the paper is organized as follows. Section 2 presents
the main concepts of the sequential version of the scenario cluster
BFC-MS algorithm introduced in [1,9], which are also needed to
introduce the parallel version. The section also presents some new
concepts. Section 3 introduces the Parallel Computing Branch-and-
Fix Coordination MultiStage (PC-BFCMS) algorithm. Section 4
reports the main results of a broad computational experience to
assess the validity of the PC version of the BFC-MS algorithm
versus its sequential version and the plain use of a state-of-the-art
MIP solver. Section 5 concludes and outlines future work.

2. Basic models in the sequential version of the scenario
cluster BFC-MS algorithm

It is assumed in this section that the main concepts and
definitions of the sequential version of the algorithm are known,
see [1]; so, they are used directly to present the models required
by the parallel version, i.e., the PC-BFCMS algorithm.

PC-BFCMS also uses a nonsymmetric scenario tree based
approach to represent the uncertainty in the random variables.
So, the compact representation of the DEM of the multistage
stochastic mixed 0–1 problem can be expressed as follows:

zDEM ¼min ∑
g∈G

wgðagxg þ bgygÞ

s:t: A′sðgÞxsðgÞ þ Agxg þ B′sðgÞysðgÞ þ Bgyg ¼ hg ∀g∈Gt ; t∈

xg∈f0;1gng ; yg∈R
þng ∀g∈G; ð1Þ

where T ¼ f1;…; Tg, wg is the likelihood assigned by the modeler
to scenario group g, such that wg ¼∑ω∈Ωgwω, for g∈G, being wω the

likelihood or probability of scenario ω∈Ω, where Ω is the set of
scenarios under consideration, G denotes the set of scenario
groups, Ωg is the set of scenarios in group g, and sðgÞ is the
immediate predecessor group of group g, such that sðgÞ∈GtðgÞ�1,
for g∈G�G1, where t(g) is the stage from set T to which group g
belongs to. Notice that g∈GtðgÞ and Gt is the set of scenario groups
in stage t. Observe also that wd ¼wω for ω∈Ωd, d∈GT such that Ωd

is a singleton set. Additionally, xg and yg represent the replicas of
the x and y variables for scenario group g, respectively, ag and bg
are the related objective function vector coefficients for the 0–1
and continuous variables, respectively, A’g, Ag, B’g and Bg are the
constraint matrices, and hg is the right-hand-side vector (rhs).
See e.g., [10] for the main concepts on stochastic optimization via
scenario tree analysis.

On the other hand, the splitting variable representation expli-
citly considers the non-anticipativity constraints (NAC) xωt �xω′t ¼ 0
and yωt �yω′t ¼ 0 for stage t∈T under scenario ω∈Ω, see [9]. It is
clear that the explicit representation is not desirable for all pairs
ðω;ω′Þ of scenarios in order to reduce the model's dimensions.
So, the NAC for some pairs of scenarios can be implicitly repre-
sented in order to gain computational efficiency.

The scenario tree is decomposed into a set of subtrees, each for
a scenario cluster in the set denoted as C¼ f1;…;Cg with C ¼ jCj.
Let Ωc denote the set of scenarios that belong to cluster c, such that
Ωc⋂Ωc′ ¼∅, c; c′∈C : c≠c′ and Ω¼ ∪c∈CΩc. Additionally, let a break
stage, say, tn be a stage such that the number of scenario clusters is
C ¼ jGtnþ1j, where tn þ 1∈T . In this case, any cluster c∈C is induced
by a group g∈Gtnþ1 and contains all scenarios belonging to that
group, i.e., Ωc ¼Ωg . So, the models of the scenario clusters in set C
result from the relaxation of the NAC until break stage tn in the
original DEM (1). See [1] for details.

The original DEM can now be formulated via a mixture of the
splitting variable and compact representations, so that the sub-
models are linked by the explicit NAC up to break stage tn. To that
end we slightly abuse the notation such that xc

t and yct denote the
vectors of the 0–1 and continuous variables, respectively, for
scenario cluster c∈C and stage t∈T , act and bc

t are the vectors of
the objective function coefficients of the variables vectors xc

t and
yct , respectively, and nxc

t and nyct denote the number of 0–1 and
continuous variables, respectively, for the pair (c,t). Similarly, let hc

t
denote the new rhs. Additionally, let Gc⊂G denote the set of
scenario groups for cluster c, such that Ωg∩Ωc≠∅ means that
g∈Gc , and let Gc

t ¼ Gt∩Gc denote the set of scenario groups for
cluster c∈C in stage t∈T .

The MIP submodel for cluster c∈C can be formulated as follows:

zc ¼min ∑
t∈T

wc
t ðactxc

t þ bc
ty

c
t Þ

s:t: cluster c constraint system ð3Þ
xc
t∈½0;1�nx

c
t ; yct∈R

þnyct ∀t∈T ; ð2Þ
where the cluster c constraint system is expressed as

A′c
t x

c
t�1 þ Ac

tx
c
t þ B′c

t y
c
t�1 þ Bc

ty
c
t ¼ hc

t ∀t≤tn þ 1
½At ′�cxc

t�1 þ ½At �cxc
t þ ½Bt ′�cyct�1 þ ½Bt �cyct ¼ hc

t ∀tn þ 1ot≤T : ð3Þ
The set of constraints in model (2) is split into two blocks. The first
represents the constraints related to the vectors of variables from
stage t¼1 up to stage tn þ 1 (i.e., stages with explicit NAC), since
those variables must be linked with their own replicas in the
appropriate clusters in set C. The second block represents the
constraints related to the vectors of variables from stage tn þ 2 up
to the last stage T (i.e., stages with implicit NAC). See [1,9] for
details.

Let us split the set of stages T into two subsets, such that
T ¼ T 1⋃T 2, where T 1 ¼ f1;…; tng, and T 2 ¼ ftn þ 1;…; Tg.
For modeling the (explicit) NAC of the scenario clusters for the
stages in set T 1, consider the following definition.
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