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a b s t r a c t

The Weighted Gene Regulatory Network (WGRN) problem consists in pruning a regulatory network

obtained from DNA microarray gene expression data, in order to identify a reduced set of candidate

elements which can explain the expression of all other genes. Since the problem appears to be

particularly hard for general-purpose solvers, we develop a Greedy Randomized Adaptive Search

Procedure (GRASP) and refine it with three alternative Path Relinking procedures. For comparison

purposes, we also develop a Tabu Search algorithm with a self-adapting tabu tenure. The experimental

results show that GRASP performs better than Tabu Search and that Path Relinking significantly

contributes to its effectiveness.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A DNA microarray is a tool for analyzing gene expression. It is
a small, solid support (usually a glass microscope slide, but it
can also be silicon chips or nylon membranes) onto which the
sequences from thousands of different genes are attached at fixed
locations. It works by exploiting the ability of a given mRNA
molecule to bind specifically to the DNA template from which it
originated: by measuring the amount of mRNA bound to each site
on the microarray, scientists can determine the expression levels
of hundreds or thousands of genes in a single experiment.

The use of DNA microarray is reshaping biomedical sciences by
making available in public repositories a large amount of gene
expression data. This allows to apply computationally intensive
data analysis methods to unveil the functioning of the regulatory
systems of which the individual gene and its interactions form a
part, see [4,30]. On this subject, uncovering the gene function and
operation, and their functional linkages is essential to understand
how genes are implicated in the control of intracellular and
intercellular processes [2], how genomic expression programs
unfold during developmental processes, how the molecular
machinery of cells works to respond adequately to environmental
clues and to maintain homeostasis, and, consequently, how to
manipulate these processes to human advantage. Hence, gaining
an understanding of the emergence of complex patterns of
behavior from the interactions between genes in a regulatory

network poses a huge scientific challenge with potentially high
industrial pay-offs.

Several reverse engineering approaches have been proposed to
make sense of large, multiple time-series data sets arising in
expression analysis. See [16,18,28] for relevant surveys on the
subject. The purpose of these methods is to produce a high-
fidelity representation of the cellular network topology as a
graph, where nodes represent genes and arcs represent direct
regulatory interactions (i.e., influences of gene products upon the
expression of other genes), thus explaining gene expression data.

Herein, we present an optimization approach to reconstruct
gene regulatory networks from DNA microarray gene expression
data. More specifically, we focus on the problem of pruning a
putative regulatory network to identify a small set of interesting
candidate regulatory elements [7,29]. The model generates
networks in which a relatively small number of regulators explain
the expression of all genes, while the other elements are
considered neutral, i.e., do not have any activation/inhibition
influence upon other genes of the network, though they play a
role in biochemical intracellular and intercellular processes. We
do not assert that the result of our computation identifies the real
regulatory network, but we believe that our approach quickly
enables biologists to focus on interesting features extracted from
raw expression array data sets.

The considered model is intrinsically difficult to solve because
it admits the Set Covering problem as a very special case [8,29]. As
a matter of fact, commercial solvers fail to solve even fairly small
instances in reasonable computational times. To compute good
quality solutions of large instances, we implemented a Greedy
Randomized Adaptive Search Procedure (GRASP), which is a well-
known local search metaheuristic methodology for hard combi-
natorial optimization problems, see [12,13,33]. To improve the
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effectiveness of the algorithm, we also introduced three different
intensification strategies, based on the Path Relinking (PR) frame-
work [22]. These strategies search for better solutions along
trajectories suitably designed in the solution space, but each
one applies a different criterium to select the destinations of
these trajectories. To assess the performance of the GRASP, we
compare its results to those achieved by a Tabu Search (TS)
competitor, which explores the same neighborhood. This alter-
native approach is also known to provide effective algorithms for
hard combinatorial optimization problems [21].

The paper is organized as follows. In Section 2 we formally define
the problem, through a mathematical programming formulation. In
Sections 3 and 4 we present a GRASP with PR and a TS heuristic to
compute good quality solutions in a reasonable amount of time.
Section 5 compares the computational results of the two approaches
and, finally, Section 6 draws some conclusions.

2. A formal definition of the problem

The problem of designing a gene network which provides a
parsimonious explanation for the expression of a set of genes is
known as Weighted Gene Regulatory Network (WGRN) problem.
This problem models the gene network as a weighted directed
graph GðN,A [ I,wÞ, whose set of nodes N represents the gene
products, while two disjoint sets of arcs A�N � N and I�N � N

represent the putative activations (A) and inhibitions (I), respec-
tively. The weight function w : A [ I-½0;1�, derived from the
activation–inhibition index [7], measures how strongly the genes
activate or inhibit each other: wij ¼ 0 denotes a full correlation
between gene products i and j, whereas wij ¼ 1 denotes the
absence of any relation between them.

The problem amounts to determining a subset of gene products
which explain both the activation and the inhibition of all the genes
in the network. This means that each node must have at least one
activator and one inhibitor arc incoming from the identified subset
of nodes. Each gene product should be labeled as activator, inhibitor
or neutral. Neutral products exert no relevant influence. In general,
activator (resp. inhibitor) products should only exert activation
(resp. inhibition) influences, but few exceptions to this cornerstone
are allowed, that is some activator or inhibitor gene products exert
influences opposite to their label. Their presence is consistent with
biological evidence, but their number is limited [31]. Therefore, the
WGRN model minimizes the total weight of activation (resp.
inhibition) influences exerted by a node labeled as inhibitor (resp.
activator). In the following, such influences are named incoherent. In
Fig. 1, we depict an example of a gene regulatory network. In this
example, activations (resp. inhibitions) are depicted with a black
solid (resp. dashed) arrow. The solution represented has two
activators (full-black nodes) and one inhibitor (full-grey node). Note
that, though node 4 is labeled as activator, it inhibits node 1. This
incoherence increases the objective function value by an amount
equal to the weight of the arc ð4,1Þ.

We formulate the problem by assigning two binary variables
to each node: zðAÞi ¼ 1 if node i is labeled as activator, 0 otherwise;
zðIÞi ¼ 1 if node i is labeled as inhibitor, 0 otherwise. For each arc
ði,jÞ of the putative network, binary variable xij states whether the
arc is used as an incoherent influence (xij ¼ 1) or not (xij ¼ 0):

min f¼
X
ði,jÞAA[I

wij � xij

s:t:
X

i:ði,jÞAA

ðzðAÞi þxijÞZ1 8jAN ð1Þ

X
i:ði,jÞA I

ðzðIÞi þxijÞZ1 8jAN ð2Þ

zðAÞi þzðIÞi r1 8iAN ð3Þ

X
iAN

ðzðAÞi þzðIÞi ÞrM ð4Þ

xijrzðIÞi 8ði,jÞAA ð5Þ

xijrzðAÞi 8ði,jÞA I ð6Þ

xijAf0,1g 8ði,jÞAA [ I ð7Þ

zðAÞi ,zðIÞi Af0,1g 8iAN ð8Þ

Constraints (1) and (2) force each node to have at least one
activator and one inhibitor arc incoming from the subset of nodes
identified. As they are set covering constraints, when an activa-
tion (resp. inhibition) constraint is satisfied, we will say that the
corresponding node is covered in activation (resp. inhibition).

Constraints (3) require each node to be labeled either as
activator, inhibitor or neutral (in this case, both zðAÞi and zðIÞi are
set to 0). To guarantee a parsimonious explanation, the number of
activator and inhibitor nodes is bounded above by Constraint (4).
Notice that if an optimal solution includes less than M labeled
(activator or inhibitor) nodes, it is always possible to build an
equivalent solution with exactly M labeled nodes. In fact, intro-
ducing any additional labeled node in the solution would still
satisfy the covering and disjunction constraints without inserting
any further incoherent influence. In view of this observation, in
all algorithms described in the sequel we replaced the inequality
of constraints (4) by an equality. Finally, Constraints (5) and (6)
impose that no neutral node exerts any influence.

3. A GRASP metaheuristic with PR

GRASP is a multi-start metaheuristic which alternatively
builds starting solutions and improves them. The constructive
phase uses a greedy randomized construction procedure; the
improvement phase uses local search [12,13,33]. PR is a post-
processing mechanism, which is periodically applied to the local
optima found by the search procedure and combines them to a subset
of elite solutions suitably maintained [22]. The best solution found
during the whole process is returned as the final result. Hybridiza-
tions of GRASP and PR have been applied to a wide range of
combinatorial optimization problems [33]. The following subsections

Fig. 1. Example of gene regulatory network.
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