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The theory of Compressive Sensing (CS) has experienced a tremendous growth through continuous works

Received 27 December 2016 of researchers from different cross platform domains of study. The strict realm of Shannon-Nyquist sam-
Revised 7 July 2017 pling theorem is compromised and an image can be reconstructed from fewer measurements than it was

Accepted 30 July 2017
Available online xxxx

shown necessary to be, but with a trade-off in the efficiency. In biomedical signal processing, especially
Magnetic Resonance Imaging (MRI), the potential applicability of CS is long observed. Since then quite a
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large number of research work in this field has been proposed, a few with experimental analysis, which
establish its applicability in the domain of MRI. Since the topic is too broad, this review paper presents a
discussion and summary of important works on different fields of CS-MRI. The challenges, limitations and
advantages of different techniques of CS-MRI are studied and future trend/ direction is predicted.
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1. Introduction

Magnetic Resonance imaging (MRI) is a non evasive radiology
technique which uses magnetic fields and radio waves to produce
images of the human body. Generally data points in MRI are com-
plex in frequency domain with magnitude and phase components.
These constitute a matrix called k-space. Some of the other param-
eters that influence data acquisition of MRI are - longitudinal
relaxation time T1 and transverse relaxation time T2 which vary
from tissue to tissue. However traditional sampling of continuum
data points has high sampling rates, generating a huge number
of samples. This requires considerable scan time which makes
MRI to be a slow data acquisition system. Hence over more than
two decades, attempts at lowering data acquisition time have been
made by researchers. In this direction, Compressive Sensing (CS)
has emerged as a promising solution. In CS it is possible to recon-
struct an image from fewer measurements than required in tradi-
tional sampling provided some constraints are satisfied. The
methods and trends in CS have undergone a massive improvement
over last few years such as parallel CS data acquisition MRI, dic-
tionary learning and motion estimation techniques in dynamic
MRI They are practically implemented with better results.

2. Basic underlying CS principles

The CS employs the concept of random under-sampling which
may reduce the number of k-space samples to be measured during
data acquisition in an MRI machine and hence reduce scan time.
However there are some basic requirements of CS for a reconstruc-
tion to be optimal.

The first condition for application of CS theory is that the signal
should be sparse in some transform domain. The sparsity of a sig-
nal in mathematical terms can be defined as: Let us suppose, we
have a discreet time signal x in RV which can be expressed in terms
of a set of orthogonal basis or support of vectors [‘I’,-]ﬁvz1 as follows:

X= Z?’lei‘l‘i , Where s; is the coefficient sequence of x. In matrix
form, we can simply write the above equation as x = W¥s. Then, sig-
nal x is said to be k-sparse if only k entries of s are non-zeroes and
remaining (n—k) entries are zero. The abstract CS theory
[1,2,52,53], suggests that given some conditions and constraints,
it is possible to almost exactly reconstruct a given sparse signal
(its support has cardinality less than or equal to k from a small
number of available, random linear combinations of the signal by
a non-linear reconstruction strategy. In order to measure all N

coefficients of x, we consider a vector y of dimension
M x 1(M < N) such that
y=qx (M

where {dy}ﬁl is a M x N matrix or collection of vectors called mea-

surement matrix with ¢J-T as rows. Substituting the value of x from
(1) we can write,

) Q) s

M X1 N x1

Sparse signal

]
K<M=<<N M XN K
non-zero entries

Fig. 1. The basic CS principle.

y=¢x=¢¥Ys=0s (2)

where @ = ¢¥ is a M x N matrix. In this way, we can transform a
N x 1 k-sparse signal into M x 1 set of measurements y, by using
a matrix ® as shown in Fig. 1. However, for faithful reproduction
of the signal x, the matrix ¢ and reconstruction strategy adopted,
must satisfy certain properties.

2.1. Restricted isometry property

In Eq. (2) the matrix ¢ must map two different signals into two
different sets of measurements. Hence all column sub-matrices of
¢ must be well contained. Candes, Romberg and Tao [1,3] proposed
that the sampling matrix ¢ must satisfy the following condition:
For a given constant Jy , the condition-

(1= Sa0)llx1 = Xzll3 < [1¢x1 = dxally < (1 + 62)lIx1 = Xell3 (3)

must hold for all k-sparse vectors x; and x,. The property is called
restricted isometry property (RIP) and the constant d,, is called
restricted isometry constant. The property states that all pairwise
distances must be well preserved in measurement matrix ¢. Though
it is computationally difficult to check whether a particular matrix
satisfies the above mentioned property, it has been found that many
types of random matrices (example: independent and identically
distributed Gaussian measurement matrix) satisfies the RIP.

2.2. Incoherence

Since under-sampling will result in aliasing of data points, the
behavior of the aliasing artifacts must be incoherent (noise like)
in the transform domain. In case of the under-sampling being
not random, it is impossible to distinguish between signal and its
aliases.

2.3. Reconstruction strategy

The reconstruction strategy must aim for a solution x € R" from
system of equation stated in Eq. (2). Since the system of equation is
under determined, infinitely many solutions exist for the same set
of measurements. However given the condition that x is sparse and
measurement matrix satisfies RIP, we can exactly recover x by
solving a lp-minimization problem,

min H%Hlo subjected to ¢px =y (4)
xeRN

This minimization problem was shown to be NP-hard [4,5]. A
solution to the minimization problem is given by using [; norm
instead of I norm which may yield similar result and the new
strategy is that if

N
%[, = Zm then, min,_, [[X[|, subjected to X =y (5)

i=1

In a foundation work of Compressive sensing, Candes and Tao
[1] explained that the signal reconstruction strategy should be

X = argmin ||y — ¢x|} + [|¥x], (6)

where, x and X are signal of interest and reconstructed signal
respectively, ¢ is the acquisition matrix of size N x M,y is the cap-
tured data and VW is the sparsifying transform and / is the regular-
ization parameter. The objective function here is the I[;-norm
minimization and the ,-norm constraint enforces data consistency.
In words, out of all potential sparse solutions, the equation selects
one solution that is compressible. It has been well established fact
that the proper norm for image restoration is the Total variation
(TV) norm and not the I, norm. The TV norms are essentially [;

dx.doi.org/10.1016/j.jestch.2017.07.001

Please cite this article in press as: M. Sandilya, S.R. Nirmala, Compressed sensing trends in magnetic resonance imaging, Eng. Sci. Tech., Int. J. (2017), http://



http://dx.doi.org/10.1016/j.jestch.2017.07.001
http://dx.doi.org/10.1016/j.jestch.2017.07.001

Download English Version:

https://daneshyari.com/en/article/6893824

Download Persian Version:

https://daneshyari.com/article/6893824

Daneshyari.com


https://daneshyari.com/en/article/6893824
https://daneshyari.com/article/6893824
https://daneshyari.com

