
Full Length Article

Asynchronous carry select adders

P. Balasubramanian 1

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore

a r t i c l e i n f o

Article history:
Received 3 November 2016
Revised 25 January 2017
Accepted 3 February 2017
Available online xxxx

Keywords:
Asynchronous circuits
Full adder
Carry select adder
Indication
Early output
ASIC
Standard cells
CMOS

a b s t r a c t

This paper discusses the standard cell based designs of asynchronous carry select adders (CSLAs) corre-
sponding to strong-indication, weak-indication, and early output timing regimes realized using a delay-
insensitive dual-rail code for data representation and processing, and a 4-phase return-to-zero protocol
for handshaking. Many 32-bit asynchronous CSLAs corresponding to a uniform input partition viz. 8-8-8-
8 and a non-uniform input partition viz. 8-7-6-4-3-2-2 were considered for implementation and compar-
ison. All the asynchronous CSLAs were physically realized in semi-custom ASIC design style using a
32/28 nm CMOS process technology. The simulation results show that the 32-bit early output asyn-
chronous CSLA based on the uniform input partition (8-8-8-8) enables optimized data path latency, area
occupancy, and average power dissipation compared to the rest.
� 2017 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Carry select adder (CSLA) is a square root time high-speed adder
[1], which offers a good compromise between the low area demand
of ripple carry adders (RCAs) and the high-speed performance of
carry lookahead adders (CLAs) [2,3]. Both ASIC and FPGA implemen-
tations of homogeneous CSLAs, and a hybrid architecture involving
CSLA and CLA have been considered in the existing literature
based on the synchronous design method [4–16]. However, with
respect to robust asynchronous design methods employing
delay-insensitive code(s) for data representation and processing
and a 4-phase return-to-zero protocol for handshaking, to the best
of our knowledge, there is no dedicated work available in the liter-
ature dealing with asynchronous CSLA excepting a theoretical work
[17] that proposed just a mathematical model to predict the timing
attributes of asynchronous CSLAs. This article deals with the physi-
cal implementation of a variety of 32-bit asynchronous CSLAs based
on uniform and non-uniform input partitions which correspond to
different timing regimes viz. strong-indication, weak-indication,
and early output based on a 32/28 nm CMOS process whilst
presenting the mathematical estimates alongside for comparison.

The rest of this article is organized as follows. Section 2 gives
background information about robust asynchronous circuit design.
Section 3 describes the asynchronous CSLA architecture and distin-
guishes between CSLAs constructed using uniform (8-8-8-8) and
non-uniform (8-7-6-4-3-2-2) input partitions. Section 4 presents
the simulation results obtained for various 32-bit asynchronous
CSLAs corresponding to different asynchronous design methods
and timing regimes viz. strong-indication, weak-indication, and
early output. Finally, Section 5 states the conclusions.

2. Asynchronous design preliminaries

An asynchronous logic block comprising an asynchronous digi-
tal system is the combinational logic equivalent of a synchronous
digital system [18]. Asynchronous logic blocks constructed using
delay-insensitive data codes and adhering to the 4-phase (return-
to-zero) handshake protocol are robust.

The dual-rail code is the simplest member of the family of
delay-insensitive data codes [19], based on which a data wire W
is encoded using two data wires W1 and W0 as shown in Fig. 1.
W = 1 is represented by W1 = 1 and W0 = 0, and W = 0 is repre-
sented by W1 = 0 and W0 = 1. These two conditions represent
‘valid data’, and the condition of both W1 and W0 assuming 0 is
referred to as the ‘spacer’. The 4-phase return-to-zero handshaking
requires that the application of inputs from the external environ-
ment follows the predefined sequence: valid data-spacer-valid
data-spacer, and so forth.

http://dx.doi.org/10.1016/j.jestch.2017.02.003
2215-0986/� 2017 Karabuk University. Publishing services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: balasubramanian@ntu.edu.sg.

Peer review under responsibility of Karabuk University.
1 The research work was performed when the author was affiliated with the School

of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang
Avenue, Singapore 639798.

Engineering Science and Technology, an International Journal xxx (2017) xxx–xxx

Contents lists available at ScienceDirect

Engineering Science and Technology,
an International Journal

journal homepage: www.elsevier .com/ locate / jestch

Please cite this article in press as: P. Balasubramanian, Asynchronous carry select adders, Eng. Sci. Tech., Int. J. (2017), http://dx.doi.org/10.1016/j.
jestch.2017.02.003

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jestch.2017.02.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:balasubramanian@ntu.edu.sg
http://dx.doi.org/10.1016/j.jestch.2017.02.003
http://www.sciencedirect.com/science/journal/22150986
http://www.elsevier.com/locate/jestch
http://dx.doi.org/10.1016/j.jestch.2017.02.003
http://dx.doi.org/10.1016/j.jestch.2017.02.003


The representative block diagram of a typical asynchronous cir-
cuit stage is shown in Fig. 1 that is accompanied by the sender-
receiver analogy. The valid data and spacer processing operations
of an asynchronous circuit stage following the predefined input
sequences of valid data-spacer-valid data-spacer and so forth are
explained in [18], and the reader is referred to the same for details.
In Fig. 1, the junction dots shown enclosed within the pink ovals in
dotted lines represent isochronic forks. Isochronicity forms the
weakest compromise to delay-insensitivity [20], and an isochronic
fork implies that all the nets forking out from the junction tend to
experience similar signal transitions occurring concurrently.

Referring to Fig. 1, the 4-phase return-to-zero handshake proto-
col is explained as follows. The dual-rail data bus that feeds the
current stage register (i.e., sender) is initially in the spacer state,
and the common acknowledge input viz. ackin for the current stage
register is binary 1 since the common acknowledge output viz. ack-
out provided by the next stage register (i.e., receiver) is binary 0.
The current stage register now transmits a code word which corre-
sponds to valid data. This results in low to high transitions on any-
one of the corresponding rails of all the dual-rail bus wires which
feed the asynchronous logic block. After the next stage register
receives a code word subsequent to completion of data processing
in the asynchronous logic block it drives ackout to 1, and ackin
assumes 0. The current stage register waits for ackin to become 0
and then resets the data bus i.e., the data bus feeding the asyn-
chronous logic block is driven to the spacer state. After an
unbounded but finite and positive amount of time taken for the
resetting of the asynchronous logic block and the passage of spacer
to the following register stage, the next stage register drives ackout
(ackin) to 0 (1). With this, a single data transaction is said to be
completed and the asynchronous circuit is ready to commence
the next data transaction.

The timing diagram of the 4-phase asynchronous signaling pro-
tocol is shown in Fig. 2 for clarity with the request (req) and
acknowledge (ack) wires explicitly shown to describe the hand-
shaking process. It can be observed that four transitions are
required to complete a data transaction based on this signaling
protocol and there is an intermediate return-to-zero phase of both
the req and ack wires preceding every transaction since the signal-
ing convention is level-sensitive, i.e., valid data corresponding to
logic high viz. binary 1, and the spacer data corresponding to logic
low viz. binary 0.

Asynchronous logic blocks are classified as strongly indicating
[21,22], weakly indicating [21,23], and early output [24,25] types.
Indication in an asynchronous logic block means acknowledging
the receipt of primary inputs through the primary outputs whilst
involving the intermediate outputs. With respect to an asyn-
chronous circuit stage, the indication mechanism may be local or
global; local – if the asynchronous logic block within the asyn-
chronous circuit stage by itself indicates the receipt of all the pri-
mary inputs, and global – if the asynchronous circuit stage on
the whole indicates the receipt of all the primary inputs along with
the asynchronous logic block present in it. It was shown in [26]
that local weak-indication is preferable over global weak-
indication for asynchronous circuits employing delay-insensitive
data encoding and following a 4-phase (return-to-zero) handshake
protocol from a combined power-cycle time-area perspective.

The input-output timing correlation of strong-indication, weak-
indication, and early output asynchronous logic blocks is illus-
trated by a representative timing diagram, portrayed as Fig. 3. A
strong-indication asynchronous logic block starts to process and
produce the required primary outputs only after receiving all the
primary inputs whether they are valid data or spacer. A weak-
indication asynchronous logic block starts to process and produce

Fig. 1. Block diagram of an asynchronous circuit stage correlated with the sender-receiver analogy for illustration.

2 P. Balasubramanian / Engineering Science and Technology, an International Journal xxx (2017) xxx–xxx

Please cite this article in press as: P. Balasubramanian, Asynchronous carry select adders, Eng. Sci. Tech., Int. J. (2017), http://dx.doi.org/10.1016/j.
jestch.2017.02.003

http://dx.doi.org/10.1016/j.jestch.2017.02.003
http://dx.doi.org/10.1016/j.jestch.2017.02.003


Download English Version:

https://daneshyari.com/en/article/6893875

Download Persian Version:

https://daneshyari.com/article/6893875

Daneshyari.com

https://daneshyari.com/en/article/6893875
https://daneshyari.com/article/6893875
https://daneshyari.com

