
Full Length Article

A novel approach for deriving interactions for combinatorial testing

Sangeeta Sabharwal, Manuj Aggarwal ⇑
Department of Computer Engineering, NSIT, New Delhi, India

a r t i c l e i n f o

Article history:
Received 15 December 2015
Revised 20 April 2016
Accepted 1 May 2016
Available online xxxx

Keywords:
t-way testing
Combinatorial testing
Interaction faults
Data flow techniques
DD path graph
Interaction testing

a b s t r a c t

Combinatorial testing focuses on identifying faults that arise due to interaction of values of a small
number of input parameters. Also known as t-way testing, it reduces the size of test set by selecting a
minimal set of test cases that cover all the possible t-way tuples. An optimal value of t (degree of inter-
action) for t-way testing for the system would maximize fault detection count in minimal number of test
cases. However, identification of an optimal value of for t-way testing for the system remains an open
issue. In this paper, we present an approach to identify the interactions that exist in the source code,
thereby reducing the count of interactions to be tested. DD path graph is generated from the source code
and interactions are identified using data flow techniques. Two case studies are also discussed in order to
demonstrate our approach. Experimental results indicate that our approach significantly reduces the
count of interactions to be tested without significant loss of fault detection capability. The approach is
extensible to large sized structured programs.
� 2016 The Authors. Publishing services by Elsevier B.V. on behalf of Karabuk University This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Software testing is an expensive and time consuming activity
that leads to production of reliable software systems [1,2]. Due
to its importance, testing process is allocated a large share of the
software development resources [3]. However, it is often observed
that when the usage of large data-intensive software increases, the
modules which have passed conventional testing methods start
developing undetected errors [4]. The possible reasons include
addition of records with an oddball combination of values that
has not occurred before in the software. It is observed that these
rare combinations of values which have escaped testing process
and usage of software can cause interaction failures. To avoid such
failures, it is desirable to test all combinations of values in an
exhaustive manner. However, exhaustive testing is not feasible
either due to time or resources availability. Thus a technique is
required that focuses on testing combination of values.

Combinatorial (t-way) testing focuses on testing combinations
of values. It is based on the observation that a large number of
faults are caused by interactions of a few input parameters. Hence
rather than testing all combinations in an exhaustive manner,
combinations of only few parameters are tested. In order to gener-
ate test set, values for input parameters are selected such that

every possible combination of values of any t parameters occurs
at least once [5]. t is also known as the strength of coverage or
interaction strength.

As an example, let us consider 3 input parameters, A, B and C,
each can have 2 possible values, 0 and 1. Pairwise testing (where
t = 2) would require the following 4 test cases as given in Table 1.
Test cases are designed such that all possible pairs of values are
getting covered.

As per studies, it is observed that maximum value of interaction
strength is 4–6 for most of the systems [4]. As the value of interac-
tion strength increases, the total number of detectable errors
increases. But, an increase in interaction strength leads to an
increase in the test set size, and hence increases the cost of testing.
On the other hand, lower interaction strength leads to reduction in
test set size which affects faults detection rate. Thus an optimal
value of interaction strength can substantially reduce the testing
costs without compromising fault detection capability. However,
not much research is done in this area.

We have focused on two types of interaction failures as defined
in the literature [2]. These are type 1 interaction failures and type 2
interaction failures. Type 1 interaction failures occur when a code
segment in which a fault exists is executed. Due to interaction
among variables, the faulty code is executed. For the pseudo code
given in Fig. 1, a software system is observed to fail only for a set of
customers residing at a particular location. Due to an interaction of
two or more variables, a block of code is executed in which fault
exists. Type 2 interaction failures occur when performing some
computation on two or more variables leads to an incorrect result.

http://dx.doi.org/10.1016/j.jestch.2016.05.008
2215-0986/� 2016 The Authors. Publishing services by Elsevier B.V. on behalf of Karabuk University
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: ssab63@gmail.com (S. Sabharwal), mmanuj.aggarwal@gmail.

com (M. Aggarwal).

Peer review under responsibility of Karabuk University.

Engineering Science and Technology, an International Journal xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Engineering Science and Technology,
an International Journal

journal homepage: www.elsevier .com/ locate / jestch

Please cite this article in press as: S. Sabharwal, M. Aggarwal, A novel approach for deriving interactions for combinatorial testing, Eng. Sci. Tech., Int. J.
(2016), http://dx.doi.org/10.1016/j.jestch.2016.05.008

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jestch.2016.05.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ssab63@gmail.com
mailto:mmanuj.aggarwal@gmail.com
mailto:mmanuj.aggarwal@gmail.com
http://dx.doi.org/10.1016/j.jestch.2016.05.008
http://www.sciencedirect.com/science/journal/22150986
http://www.elsevier.com/locate/jestch
http://dx.doi.org/10.1016/j.jestch.2016.05.008


Type 2 interaction failures are illustrated using pseudo code in
Fig. 2. Here, placing an erroneous operator causes the set of vari-
ables involved in computation to produce an incorrect result. In
this paper, we aim to identify interactions that may cause these
two types of interaction failures to occur.

Data flow analysis techniques derive the information about the
flow of data that exist in the program [6]. At each step in the pro-
gram, the information about definition and usage of variables is
obtained. The two usages defined are computation use (c-use)
and predicate use (p-use) [2]. The usage of a variable is considered
c-used if the variable occurs as a part of an assignment statement,
as an argument passed to a function, in a subscript expression or in
an output statement. The usage of a variable is considered p-used if
the variable is used in a condition expression.

In this paper, a novel approach is presented that derives the
interactions of variables that exist in the code. We have extended
an existing work [7] by modifying their approach to handle the
modularized programs where the basic modules are functions.
The previous approach to identify the interactions among variables
was meant for programs consisting of a single function only. Fur-
ther, we have optimized the approach so that the resulting flow
graph created using our approach contains less number of nodes
as compared to the previous work. A flow graph is generated from
the source code and data flow technique is applied on it. The c-use
of a variable is redefined for the approach. From the flow graph and
usage of variables, interactions are identified. The approach
achieves a significant reduction in the count of interactions to be
tested. As a result, rather than testing all the possible t-way inter-
actions, only the identified interactions are tested which leads to
reduction in testing costs. From the literature, the authors could
not find any study that tries to identify the strength of coverage
for a large sized system. Hence, our study may be considered as
unique.

The remainder of this paper is organized as follows. Next Sec-
tion discusses the related work done in this field. In Section 3,
the proposed approach to identify the interactions is explained.
In Section 4, we have illustrated our approach with the help of case
studies. Section 5 discusses the experimental results. In Section 6,
threats to validity are given. Finally, in Section 7, some conclusions
and future work are outlined.

2. Related work

Combinatorial testing (CT) has been widely studied and has
become a well-accepted testing method. A large number of
research articles have focused on CT. Researchers [8] have broadly
classified them into eight categories. Category 1 includes all the
articles that focus on generation of combinatorial test suites. Most
widely Covering Arrays [9] are generated using metaheuristic
methods such as Tabu Search, Simulated Annealing [10], Ant Col-
ony Optimization, Particle Swarm Optimization, simplified swarm
optimization [11] and Genetic Algorithms [12]. However, some
authors have generated test suite using greedy methods [5], math-
ematical methods and recursive methods. A few researchers have
taken into account the seeding and constraints. Category 2 includes
all the articles that focus on test case prioritization. In CT, prioriti-
zation has been achieved either by reordering an existing test suite
on the basis of prioritization criteria (coverage measurement, etc.)
or generating prioritized test suite that includes important combi-
nations first. Researchers [13] have designed formulas to compare
the weights of the prioritization. Category 3 and 4 includes articles
that evaluate how CT has improved the software quality and arti-
cles that focus on metrics. Most of the articles have considered
combinatorial coverage as metric to evaluate the effectiveness of
combinatorial testing. Category 5 includes the articles that study
the application of CT to various types of applications. CT has been
used for performance evaluation [14], feature testing of mobile
phone applications [15,16], testing of network interface [17], etc.
Category 6 includes articles that have taken into account the con-
straints [18]. A test suite must satisfy constraints and invalid test
cases need to be eliminated.

In category 7, articles focusing on fault detection are discussed.
Here, techniques to identify faults are discussed that have caused a
failure to occur. It is required to identify the faults and remove
them so as to improve the software quality [19]. Classification tree
approach [20], classification and tuple relationships [21] are
used for identification of failure inducing combinations. However,
these approaches can identify the faults only when failures have
occurred.

Last category includes all the articles that focus on modeling of
System Under Test (SUT). Although building a precise model of
SUT, such as Input Parameter Model [22] leads to effective CT,
not much research has been done in this area. An SUT model for
CT includes parameters and their values. It also includes the rela-
tionships among the parameters. These elements are identified
from various documents generated during software life cycle, such
as SRS, SDD, implementation, etc. Some researchers have identified
parameters and their values from artifacts such as UML activity
diagram [23] and UML sequence diagram [24]. Attempts have been
made to reduce the size of test suite by reducing the count of
parameters for SUT model [25] and identifying relationships
between input and output parameters [26].

As can be concluded from the literature, CT has been exten-
sively studied. Various research articles exist that focus on CT. As
stated earlier, there exists a need to identify all the possible inter-
actions among variables for t-way testing. However, not much
research has been done to identify the strength of coverage for a
large sized system. Some approaches, as mentioned in category 7

Begin
if (customer belongs to set A){

//some code here
if(customer.residence==UK){

//faulty code here
}
else{

//block of code-executes normal
}

}
End

Fig. 1. Pseudo code illustrating type 1 interaction failure.

Begin
float x, y, z;
float result=(x*y)/z// it should be (x*y)-z
//block of code
End

Fig. 2. Pseudo code illustrating type 2 interaction failure.

Table 1
Pairwise test set for a problem where each variable can have 2 possible values.

A B C

0 0 0
0 1 1
1 0 1
1 1 0

2 S. Sabharwal, M. Aggarwal / Engineering Science and Technology, an International Journal xxx (2016) xxx–xxx

Please cite this article in press as: S. Sabharwal, M. Aggarwal, A novel approach for deriving interactions for combinatorial testing, Eng. Sci. Tech., Int. J.
(2016), http://dx.doi.org/10.1016/j.jestch.2016.05.008

http://dx.doi.org/10.1016/j.jestch.2016.05.008


Download English Version:

https://daneshyari.com/en/article/6894009

Download Persian Version:

https://daneshyari.com/article/6894009

Daneshyari.com

https://daneshyari.com/en/article/6894009
https://daneshyari.com/article/6894009
https://daneshyari.com

