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a b s t r a c t 

We consider a Markovian queueing system with two unreliable heterogeneous servers and one common 

queue. The servers serve customers without preemption and fail only if they are busy. Customers are al- 

located to one or the other server via a threshold control policy which prescribes using the faster server 

whenever it is free and the slower server only when the number of waiting customers exceeds a spec- 

ified threshold level that depends on the state of the faster server. This paper focuses on the reliability 

analysis of a system with unreliable heterogeneous servers. First, we obtain the stationary state distribu- 

tion using a matrix-geometric solution method. Second, we analyse the lifetimes of the servers and of the 

system. We provide algorithms for calculating the stationary reliability characteristics, reliability functions 

in terms of the Laplace transform and the mean times to the first failure. A new reliability measure is 

introduced in the form of the discrete distribution function of the number of failures during a specified 

life time that is derived from a probability generating function. The effects of various parameters on these 

reliability characteristics are analysed numerically. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

To improve modern communication systems in terms of perfor- 

mance and reliability, they can be supplied with controllable het- 

erogeneous environment. The heterogeneity in such systems may 

be easily explained by virtue of the following examples. The data 

centers with a cloud computing paradigm containing the execu- 

tion servers of many generations as a consequence of continuous 

system updates ( Bai, Xi, Zhu, & Huang, 2015 ). Obviously in this sys- 

tem the servers can differ in terms of speed, capacity, availability, 

power consumption an so on. Another example is a hybrid wire- 

less channel working on the basis of Radio Frequency/Free Space 

Optic (RF/FSO) technology ( Vishnevskii, Semenova, & Sharov, 2013 ). 

The links of this channel have unequal data throughput, availabil- 

ity and reliability characteristics. The capacity of RF link is con- 

strained by limits to link throughputs on the order of 10 s of Mbps. 

On the contrary, the commercial FSO currently provide through- 
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puts of several Gbts but the link availability is limited by adverse 

weather conditions like fogs and heavy snowfalls. Therefore, the 

hybrid channel combines advantages of both types of links. One 

more example is a single cell of a cellular (3GPP LTE) network with 

a Licence Shared Access (LSA) technology, for details see Gudkova 

et al. (2015) , which assumes that the band can be used when the 

owner does not need it. In this case heterogeneous environment 

consists of the reliable main and unreliable reserve pool of servers 

which is used according to a specified hysteretic control policy. The 

proposed examples have motivated us to apply the queueing sys- 

tem with unreliable heterogeneous servers for modelling the dy- 

namic behaviour and analysis the relationships between different 

factors influencing on reliability of communication systems with 

heterogeneous unreliable environment. 

Analyses of multi-server queueing systems generally as- 

sume that the servers are homogeneous. Mitrany and Avi-Itzhak 

(1967) and Neuts and Lucantoni (1979) studied the M / M / s queue- 

ing system with server breakdowns and repairs. Levy and Yechiali 

(1976) analysed the M / M / s queue with server vacation. A recent 

paper by Efrosinin, Samouylov, and Gudkova (2016) reported on 

stationary analysis of the busy period for a multi-server Markovian 

queueing system with simultaneous failures of servers. Queues 

with heterogeneous unreliable servers have rarely been addressed 

by research. A queueing system with two heterogeneous servers 
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and multiple vacations was studied by Kumar and Madheswari 

(2005) , who obtained the stationary queue length distribution by 

using a matrix geometric method and provided an analysis of busy 

period and waiting time. In Kumar, Madheswari, and Venkatakr- 

ishnan (2007) , the same authors introduced the M / M /2 queueing 

system with heterogeneous servers subject to catastrophes, and 

provided a transient solution for the system under study. A het- 

erogeneous two-server queueing system with balking and server 

breakdowns was studied by Yue, Yue, Yu, and Tian (2009) . They 

used a matrix-geometric solution method to obtain some mean 

performance measures. 

In a heterogeneous queueing system with one common queue, 

particularly in the case of service without preemption (a customer 

can not change the server during a service time) a mechanism that 

allocates customers to the servers must be specified. The majority 

of heterogeneous systems investigated use heuristic service poli- 

cies (e.g. the Fastest Free Server (FFS) or Random Service Selection 

(RSS) policies). In fact, these policies are not optimal, if, for in- 

stance, the mean response time is to be minimized. As previously 

shown (see, e.g. the results of B & Jouini, 2016; Efrosinin, 2008; 

Koole, 1995; Lin & Kumar, 1984; Rykov & Efrosinin, 2009 ), the op- 

timal allocation policy for heterogeneous queueing systems is one 

of a class of threshold policies where the less effective server is to 

be used only if the number of customers in the queue has reached 

some pre-specified threshold level. This result was confirmed for 

a queueing system with faster unreliable server and absolutely 

reliable slower server in Efrosinin (2013) , Ozkan and Kharoufeh 

(2014) and for two unreliable heterogeneous servers in a system 

with constant retrial discipline in Efrosinin and Sztrik (2016) . In 

the last paper mentioned, it was shown that for a fixed thresh- 

old policy the corresponding Markov process is of the QBD (quasi- 

birth-and-death) type with a tri-diagonal block infinitesimal matrix 

with a large number of bounding states. 

While first steps in performance analyses of controllable hetero- 

geneous queueing systems with completely reliable servers have 

already been published, application to heterogeneous models also 

requires a reliability analysis of such queues when servers are 

subject to failure. Here we use a forward-elimination-backward- 

substitution method expressed in matrix form in terms of the 

Laplace–Stiltjes transforms (LST) combined with probability gener- 

ating function (PGF) approach to evaluate reliability measures such 

as reliability function (i.e., the complementary cumulative distri- 

bution function of the lifetime) and mean time to first failure for 

each server separately and for the group of servers under the fixed 

threshold allocation control policy. The reliability functions are ob- 

tained in terms of the Laplace transform (LT), and a numerical in- 

version algorithm is used to obtain the time-dependent functions. 

Additionally, we introduce a new discrete reliability metric in the 

form of the distribution of the number of failures during a certain 

lifetime. We expect that our results can be generalized to the case 

of an arbitrary controllable unreliable queueing model with a QBD 

structure. 

The remainder of paper is organized as follows: In Section 2 , 

we describe the mathematical model and present the stationary 

state distribution using a matrix-geometric solution method. In 

Section 3 , we develop a computational analysis of the station- 

ary reliability characteristics, the reliability function and the mean 

time to first failure. The number of failures during a certain life 

time is investigated in Section 4 . In Section 5 , numerical examples 

are provided to highlight the effect of some parameters on the re- 

liability characteristics. 

Hereafter, the notations e ( n ), e j ( n ), and I n are used respectively 

for the column vector consisting of 1’s, the column vector with 

1 in the j th (beginning from 0th) position and 0 elsewhere, and 

an identity matrix of the dimension n . When there is no need to 

emphasize the dimensions of these vectors, the suffix is omitted 

and dimensionality is determined by the context. The expressions 

d iag(a 1 , . . . , a n ) , d iag + (a 1 , . . . , a n ) , and d iag −(a 1 , . . . , a n ) denote re- 

spectively the diagonal matrix, the upper diagonal matrix, and the 

lower diagonal matrix with entries a 1 , . . . , a n that can be scalars or 

matrices. 

2. Mathematical model and stationary distribution 

In this paper, we address a two-server heterogeneous unreliable 

queueing model of the M / M /2 type as illustrated in Fig. 1 (a). 

Customers arrive according to a Poisson process with arrival 

rate λ. The service times are exponentially distributed with rates 

μ1 and μ2 , where μ1 ≥μ2 . We assume that the servers fail re- 

spectively at exponential rates α1 and α2 . A server can fail only 

if it is busy. A failed server is repaired immediately, and the time 

required to repair it is exponentially distributed respectively with 

rates β1 and β2 . A customer being served at the moment of fail- 

ure is left at this server during repair and can be served when the 

server becomes operational again. The mechanism of allocation to 

the two servers is based on a threshold policy: Depending on the 

state of the faster server, the slower is used whenever the number 

of customers in the queue exceeds a certain threshold level. 

Let Q ( t ) and D (t) = { D 1 (t) , D 2 (t) } denote, respectively, the 

number of customers in the queue and the vector state of servers 

at time t , where service process 

D j (t) = 

⎧ ⎨ 

⎩ 

0 , the server j is idle, 

1 , the server j is busy and operational, 

2 , the server j has failed. 

with transitions as shown in Fig. 1 (b). The threshold policy f = 

(q 1 , q 2 ) is defined by two threshold levels 1 ≤ q 2 ≤ q 1 < ∞ . Accord- 

ing to this policy, server 1 must be used upon new arrival when- 

ever it is free and there are customers in the queue, whereas idle 

server 2 is ready to serve the arriving customers only if server 1 

is in state 1 or 2 and the number of customers in the queue has 

reached the corresponding threshold value q 1 or q 2 . If server 1 is in 

state 1 or 2 upon service completion at server 2 and the number 

of customers in the queue is smaller than q 1 or q 2 , then further 

allocation of customers to server 2 is not possible. For the fixed 

threshold policy f the process 

{ X (t) } t≥0 = { Q(t) , D (t) } t≥0 (1) 

is a continuous-time Markov chain with a state space given by 

E = { x = (q, d 1 , d 2 ) ; q ∈ N 0 , (d 1 , d 2 ) ∈ E D } , (2) 

where E D is a set of states of servers that is defined as 

E D = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

(d 1 , d 2 ) ;

d j ∈ { 0 , 1 , 2 } , j ∈ { 1 , 2 } , q = 0 , 

d 1 ∈ { 1 , 2 } , d 2 ∈ { 0 , 1 , 2 } , 1 ≤ q ≤ q 2 − 1 , 

d 1 ∈ { 1 , 2 } , d 2 ∈ { 0 , 1 , 2 } , (d 1 , d 2 ) � = (2 , 0) , 
q 2 ≤ q ≤ q 1 − 1 , 

d j ∈ { 1 , 2 } , j ∈ { 1 , 2 } , q ≥ q 1 , 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

. 

Next we partition E into blocks as follows: 

(0 , 0 ) = { (0 , 0 , d 2 ) ; d 2 ∈ { 0 , 1 , 2 }} , 

(q , 1 ) = 

{ { (q, 1 , 0) , (q, 2 , 0) , (q, 1 , 1) , (q, 2 , 1) , (q, 1 , 2) , (q, 2 , 2) } , 0 ≤ q ≤ q 2 − 1 , 

{ (q, 1 , 0) , (q, 1 , 1) , (q, 2 , 1) , (q, 1 , 2) , (q, 2 , 2) } , q 2 ≤ q ≤ q 1 − 1 , 

{ (q, 1 , 1) , (q, 2 , 1) , (q, 1 , 2) , (q, 2 , 2) } , q ≥ q 1 . 
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