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a b s t r a c t 

This paper considers packing and cutting problems in which a packing/cutting pattern is constrained in- 

dependently in two or more dimensions. Examples are restrictions with respect to weight, length, and 

value. We present branch-and-price algorithms to solve these vector packing problems (VPPs) exactly. 

The underlying column-generation procedure uses an extended master program that is stabilized by 

(deep) dual-optimal inequalities. While some inequalities are added to the master program right from the 

beginning (static version), other violated dual-optimal inequalities are added dynamically. The column- 

generation subproblem is a multidimensional knapsack problem, either binary, bounded, or unbounded 

depending on the specific master problem formulation. Its fast resolution is decisive for the overall per- 

formance of the branch-and-price algorithm. In order to provide a generic but still efficient solution ap- 

proach for the subproblem, we formulate it as a shortest path problem with resource constraints (SPPRC), 

yielding the following advantages: (i) Violated dual-optimal inequalities can be identified as a by-product 

of the SPPRC labeling approach and thus be added dynamically; (ii) branching decisions can be imple- 

mented into the subproblem without deteriorating its resolution process; and (iii) larger instances of 

higher-dimensional VPPs can be tackled with branch-and-price for the first time. Extensive computa- 

tional results show that our branch-and-price algorithms are capable of solving VPP benchmark instances 

effectively. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In this paper, we analyze different covering formulations and 

column-generation-based solution approaches for packing and 

cutting problems with two or more dimensions. While the 1- 

dimensional case includes the classical bin packing problem (BPP) 

and cutting stock problem (CSP) that are both well studied and 

recently surveyed by Delorme, Iori, and Martello (2016) , we fo- 

cus on the multidimensional case where packings/cutting pat- 

terns are constrained independently in all dimensions. Examples 

are restrictions with respect to weight, length, and value. In the 

following, we refer to these problems as vector packing prob- 

lems (VPPs). The literature uses different names for VPPs such 

as p -dimensional vector (bin) packing ( Brandão & Pedroso, 2016; 

Buljubaši ́c & Vasquez, 2016; Spieksma, 1994 ), vector bin packing 

( Panigrahy, Talwar, Uyeda, & Wieder, 2011 ), or (for two dimensions) 

two-constraint bin packing ( Monaci & Toth, 2006 ). In contrast to 

VPPs, there is another family of multidimensional packing prob- 
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lems where dimensions are not independent, e.g., when packing 

rectangles ( Huang & Korf, 2012 ) or 3-dimensional items ( Martello, 

Pisinger, & Vigo, 20 0 0 ). These problems are not addressed here. 

VPPs have various practical applications. For example, consider 

a logistics company that has to transport items with different 

lengths and weights. The smallest amount of vehicles possible 

should be used for transportation. How can the items be packed 

into the vehicles taking into account the length of the vehicles and 

the maximum loading weight? Another example is the static re- 

source allocation problem. Given a set of servers with known ca- 

pacities and a set of services with known demands the aim is to 

minimize the number of required servers ( Panigrahy et al., 2011 ). 

In the literature, several heuristic and exact methods have 

been introduced to solve VPPs. The first exact approach was pro- 

posed by Spieksma (1994) . The author incorporated lower bounds 

into a branch-and-bound algorithm and, additionally, introduced a 

heuristic based on the first-fit decreasing heuristic. The approach 

was improved by Caprara and Toth (2001) who exploited on the 

one hand lower bounds combined with heuristics and on the other 

hand a branch-and-bound algorithm to find exact solutions for 

VPPs. Alves, Valério de Carvalho, Clautiaux, and Rietz (2014) further 

enhanced the approach by calculating lower bounds based on dual- 

feasible functions. Recently, Brandão and Pedroso (2016) adapted 
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the arc-flow formulation with side constraints ( Valério de Carvalho, 

1999 ) to packing problems including VPPs. The solution was accel- 

erated by means of graph compression to reduce symmetry and to 

combine sub-graphs. In contrast, Hu, Zhu, Qin, and Lim (2017) used 

the covering formulation of Gilmore and Gomory (1961) and in- 

troduced a branching strategy based on dominance relations be- 

tween cutting patterns. Besides exact approaches, heuristics have 

been applied to solve larger instances. Buljubaši ́c and Vasquez 

(2016) and Vasquez and Buljubaši ́c (2018) used consistent neigh- 

borhood search to find heuristic solutions. Variants of the first-fit 

decreasing algorithm were presented by Panigrahy et al. (2011) , 

yielding good heuristic VPP solutions. 

We formally define the VPP as follows: Let D ≥ 1 be an in- 

teger specifying the dimension. A given set I of items needs to 

be packed into a minimum number of equally sized bins. Bins 

are characterized by capacities given by a D -dimensional vector 

W = (W 

1 , . . . , W 

D ) . Items i ∈ I are characterized by weights/sizes 

which are given by D -dimensional vectors w i = (w 

1 
i 
, . . . , w 

D 
i 
) ≤ W . 

Dyckhoff (1990) classified cutting and packing problems according 

to the categories dimensionality, kind of assignment, assortment 

of large objects (bins), and assortment of (small) items. Hence, 

the BPP is classified as 1/V/I/R (1): 1 -dimensional/V: a selection 

of objects (bins) and all items/I: i dentical figure/R: many items of 

r elatively few different (non-congruent) figures). In contrast, the 

CSP is classified as 1/V/I/M (M: many items of m any different fig- 

ures). Although classified differently in Dyckhoff (1990) , the BPP 

and the CSP are essentially the same problem as pointed out in 

Ben Amor and Valério de Carvalho (2005 , p. 132). The relationship 

between BPP and CSP is the following: In the BPP, all items are 

modeled as individual objects . As a consequence, each and every 

item i ∈ I has a demand of q i = 1 and a model must include a cor- 

responding covering/packing constraint. In contrast, in the CSP all 

items of the same weight are aggregated . We formally introduce 

the set of aggregated items as follows: Let I[ w ] be the equiva- 

lence classes of items with identical weight w . Then, the set I of 

aggregated items is the coset I / I [ w ] that contains one represen- 

tative item for each of the different weights. As a consequence, 

any two different aggregated items i 1 , i 2 ∈ I have different weights 

w i 1 
� = w i 2 

. The demand of an aggregated item i ∈ I is q i = |I[ w i ] | = 

|{ j ∈ I : w j = w i }| ≥ 1 , and at least some aggregated items have a 

demand greater than 1. 

The models that we compare are all variations of the famous 

covering formulation of Gilmore and Gomory (1961) for CSP that 

is based on cutting patterns. For the VPP, a pattern (or packing ) 

describes how a subset of the items is packed into a bin. Assuming 

I = { 1 , 2 , . . . , m } , i.e., m is the number of aggregated items, the set 

of feasible patterns for the VPP, with different levels of aggregation, 

can be defined as 

P = 

{ 

(a 1 , . . . , a m 

) � ∈ Z 

m 

+ : 
m ∑ 

i =1 

a i w 

d 
i ≤ W 

d for all 1 ≤ d ≤ D 

} 

. (1) 

In order to uniquely refer to a pattern p ∈ P we write its coefficients 

as a p = (a 
p 
1 
, . . . , a 

p 
m 

) � . Using integer decision variables x p for the 

number of times pattern p ∈ P is used, the VPP can be formulated 

as 

z VPP = min 

∑ 

p∈ P 
x p (2a) 

(VPP) s.t. 
∑ 

p∈ P 
a p 

i 
x p = q i , i ∈ I (2b) 

x p ≥ 0 integer , p ∈ P. (2c) 

The objective (2a) is the minimization of the patterns/bins that 

are used. Constraints (2b) ensure that all items are packed as often 

as their demand requires. As already mentioned by Gilmore and 

Gomory (1961) , (2b) can be replaced by covering constraints, i.e., ∑ 

p∈ P a 
p 
i 

x p ≥ q i for all i ∈ I . The domain of the decision variables is 

given by (2c) . 

The quality of the linear relaxation bound is crucial to solve 

mixed-integer problems. As in the BPP (i.e., D = 1 and q i = 1 for 

all i ∈ I ), patterns can be restricted to only have binary coefficients 

a p ∈ {0, 1} m when modeling individual items. While such a con- 

straint does not impact the validity of integer VPP solutions to 

(2) (also for D ≥ 2), the linear relaxation is generally tighter than 

without the binary requirement. It means that a proper subset of 

patterns is used: 

P 01 = 

{
(a 1 , . . . , a m 01 

) � ∈ Z 

m 01 + : 

m 01 ∑ 

i =1 

a i w 

d 
i ≤ W 

d 

for all 1 ≤ d ≤ D and a i ≤ 1 for all i ∈ I 

}
(3) 

We denote formulation (2) using only binary patterns P 01 as binary 

VPP (01-VPP). In this case, optimal solutions to the 01-VPP have 

binary x p -variables. 

Also for VPP with non-unit demand, the patterns’ coefficients 

can be further constrained. Whenever the demand q i of some item 

i ∈ I is smaller than � W 

d /w 

d 
i 
	 for all d ∈ D , the pattern set 

P B = 

{
(a 1 , . . . , a m B 

) � ∈ Z 

m B + : 

m B ∑ 

i =1 

a i w 

d 
i ≤ W 

d 

for all 1 ≤ d ≤ D and a i ≤ q i for all i ∈ I 

}
(4) 

is a proper subset of P . We denote formulation (2) using only 

bounded patterns P B as bounded VPP (B-VPP). For completeness, 

formulation (2) with no additional bounds on pattern coefficients 

is referred to as unbounded VPP (U-VPP) and the pattern set is ex- 

plicitly denoted by P U = P in the following. 

Table 1 summarizes differences between the pure binary for- 

mulation 01-VPP, the bounded formulation B-VPP, and the un- 

bounded formulation U-VPP. Note that for a given set of individ- 

ual items I, the formulations 01-VPP and U-VPP are unique. They 

represent the two extremes of aggregation (completely disaggre- 

gated vs. fully aggregated), while B-VPP is a family of formula- 

tions resulting from different types of aggregation and exploita- 

tion/disregarding of the coefficient bounds a 
p 
i 

≤ q i in (4) . 

Due to the huge number of variables, formulation (2) is typ- 

ically solved with the help of a column-generation algorithm 

( Desaulniers, Desrosiers, & Solomon, 2005 ). One starts with a 

(small) subset of patterns P ′ ⊂ P and the linear relaxation of (2) us- 

ing only variables x p with p ∈ P ′ . This so-called restricted master 

program (RMP) is then optimized. Let π = (π1 , . . . , πm 

) � be the 

dual solution w.r.t. the covering constraints (2b) . The task of the 

pricing subproblem is then to provide (at least) one new pattern p 

with negative reduced cost ˜ c p = 1 − π� a p or to prove that no such 

pattern exists. In the former case, the resulting RMP (with the gen- 

erated pattern/s) is re-optimized and the column-generation pro- 

cess is repeated. In the latter case, the linear relaxation of (2) is 

solved providing a lower bound z V PP 
LP on z VPP . An optimal integer 

solution to (2) requires the integration of column generation into 

a branch-and-bound scheme a.k.a. branch-and-price ( Lübbecke & 

Desrosiers, 2005 ). 

The pricing problems of the different formulations 01-VPP, B- 

VPP, and U- VPP seek to find a pattern with negative reduced cost 

˜ c p that is feasible for the pattern set considered in the respective 

formulation. They are equivalent to solving one of the following 

Please cite this article as: K. Heßler et al., Stabilized branch-and-price algorithms for vector packing problems, European Journal of 

Operational Research (2018), https://doi.org/10.1016/j.ejor.2018.04.047 

https://doi.org/10.1016/j.ejor.2018.04.047


Download English Version:

https://daneshyari.com/en/article/6894443

Download Persian Version:

https://daneshyari.com/article/6894443

Daneshyari.com

https://daneshyari.com/en/article/6894443
https://daneshyari.com/article/6894443
https://daneshyari.com

