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a b s t r a c t 

We consider a communication scheduling problem to address data compression and data communica- 

tion together, arising from the data gathering wireless sensor networks with data compression. In the 

problem, the deployed sensors are heterogeneous, in that the data compression ratios, in terms of size 

reduction, the compression time, and the compression costs, in terms of energy consumption, on differ- 

ent sensors are different. The bi-objective is to minimize the total compression cost and to minimize the 

total time to transfer all the data to the base station. The problem reduces to two mono-objective opti- 

mization problems in two separate ways: in the original problem a time bound is given and the mono- 

objective is to minimize the total compression cost, and in the complementary problem a global compres- 

sion budget is given and the mono-objective is to minimize the makespan. We present a unified exact 

algorithm for both of them based on dynamic programming; this exact algorithm is then developed into 

a fully polynomial time approximation scheme for the complementary problem, and a dual fully polyno- 

mial time approximation scheme for the original problem. All these approximation algorithms have been 

implemented and extensive computational experiments show that they run fast and return the optimal 

solutions almost all the time. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

As an important way for collecting data, wireless sensor net- 

works (WSNs) have found many applications in environment 

monitoring, surveillance and other areas ( Akyildiz, Su, Sankarasub- 

ramaniam, & Cayirci, 2002 ). A data gathering WSN normally con- 

sists of a set of sensors for collecting data and a base station to 

which all the collected data should be transferred. Since these sen- 

sors have limited battery power, memory and processing capabil- 

ity ( Akyildiz et al., 2002 ), it is important to utilize and manage the 

available resources effectively. Besides adopting specific communi- 

cation protocols ( Ergen & Varaiya, 2010; Kumar & Chauhan, 2011; 

Shi & Fapojuwo, 2010; Wu, Li, Liu, & Lou, 2010 ) to improve the net- 

work performance, one approach is to design effective scheduling 

algorithms for communication between the sensors and the base 
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station ( Alfieri, Bianco, Brandimarte, & Chiasserini, 2007; Berli ́nska, 

2014; Choi & Robertazzi, 2008; Moges & Robertazzi, 2006; 

Rossi, Singh, & Sevaux, 2013 ), and another popular approach is to 

compress the data collected by the sensors, and thus to decrease 

the data sizes to shorten their communication time. For compres- 

sion algorithm design and analysis on data gathering WSNs, we 

refer the readers to Kimura and Latifi (2005) , Luo, Wu, Sun, and 

Chen (2009) , Wang, Tang, Yin, and Li (2012) , Xu, Wang, and Wang 

(2011) and Xiang, Luo, and Rosenberg (2013) . We note that com- 

pressing data consumes a certain amount of energy and incurs a 

delay in the data transfer, and the extent of each of which depends 

on the specs of the sensor, the data size, and the compression al- 

gorithm. 

To address all the data compression and the data communica- 

tion issues together in an optimization model, Berli ́nska (2015) for- 

mulated a communication scheduling problem out of the data 

gathering WSNs with data compression, with its bi-objective to 

minimize the total compression cost and to minimize the total 

time (call the makespan ) to transfer all the data. In such a schedul- 

ing problem, one is given a set of m identical (or homogeneous ) sen- 
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sors P = { P 1 , P 2 , . . . , P m 

} and a single base station denoted as S ; all 

the data collected by these sensors, either in the original form or 

in the compressed form, must be transferred to the base station 

non-preemptively one after another. 

In this paper, we consider a more general scenario in which the 

deployed sensors are heterogeneous , in that the data compression 

ratios (in terms of size reduction), compression time, and compres- 

sion costs (in terms of energy consumption) on different sensors 

are different. 

The bi-objective communication scheduling problem reduces to 

a mono-objective optimization problem in the following ways: one 

may fix a bound on the makespan and seek to minimize the to- 

tal compression cost, called the original problem and denoted as 

Compr-OptF ; or fix a compression budget and seek to minimize 

the makespan, called the complementary problem and denoted as 

Compr-OptT . 

When the deployed sensors are homogeneous, Berli ́nska 

(2015) proved that both Compr-OptF and Compr-OptT are NP-hard. 

In fact, the author proved the NP-hardness in two very special 

cases where the collected data has the same size for all sensors 

and data compression has no cost, and where transferring one unit 

of data has the same cost for all sensors and data compression is 

done instantly. Besides, the author proposed an exact algorithm 

to enumerate all possible subsets of collected data for data com- 

pression, in the minimal change order ( Kreher & Stinson, 1998 ); the 

total running time is O ( m 2 m ). Two O ( m 

2 )-time greedy heuristics 

were also proposed by the author, and examined through a se- 

ries of computational experiments. In addition to the observation 

that the quality of the computed schedules depends on the exper- 

iment parameters, a major conclusion from the computational ex- 

periments is that, for Compr-OptF , the compression cost of the so- 

lution obtained by the heuristics is usually less than 1.5 times the 

optimum. 

In this paper, the deployed sensors are heterogeneous . Realiz- 

ing that deciding whether the Compr-OptF problem has a feasible 

solution is already NP-hard ( Berli ́nska, 2015 ), we first present an 

O ( m 

4 / ε)-time bi-factor (1 + ε, 2) -approximation algorithm for the 

Compr-OptF problem, by invoking a fully polynomial time approxi- 

mation scheme (FPTAS) for the minimal knapsack problem ( Kellerer, 

Pferschy, & Pisinger, 2004 ) with an ε > 0, where (1 + ε) refers 

to the total compression cost and 2 refers to the makespan. 

We then present an O ( m 

4 / ε)-time 2-approximation algorithm for 

the Compr-OptT problem, by invoking an FPTAS for the maxi- 

mum knapsack problem ( Kellerer & Pferschy, 2004 ), with a specific 

ε > 0. Using these two approximation algorithms, for the Compr- 

OptT problem we may compute an upper bound on the optimum 

makespan, denoted as T , and for the Compr-OptF problem we 

may compute an upper bound on the optimum compression cost, 

denoted as F . We then present a unified exact algorithm based 

on dynamic programming for both Compr-OptT and Compr-OptF 

problems, with an upper bound F on the optimum compression 

cost and an upper bound T on the optimum makespan, which 

are either given or computed. The running time of this dynamic 

programming algorithm is O ( mT 2 F ), which is pseudo-polynomial. 

Adopting a sparsing technique, this dynamic programming exact 

algorithm can be converted into an FPTAS for the Compr-OptT 

problem, and can be converted into a dual FPTAS ( Hochbaum & 

Shmoys, 1987 ) for the Compr-OptF problem; both FPTAS have run- 

ning time O ( m 

4 / ε3 ), when the (dual) worst-case approximation ra- 

tio is (1 + ε) . Lastly and most importantly, we implement all these 

approximation algorithms, exact algorithms, and FPTAS to examine 

their practical performance through computational experiments, 

and make comparisons against the exact algorithm and the heuris- 

tics proposed by Berli ́nska (2015) , in both efficiency (the actual 

running time) and effectiveness (the quality of the computed so- 

lution, the total compression cost or the makespan). 

Table 1 

Numerical parameters associated with the data point P i collected by the i th sensor. 

Notation Meaning 

P i The data point collected by the i th sensor 

αi The original size of P i 
β i The size of P i if the data point is compressed 

r i The required time for compressing the data point P i 
f i The cost (required energy) for compressing the data point P i 
C i The required time for transferring one unit of data from P i to the 

base station 

2. Problem definition 

We consider a general scenario in which the deployed sensors 

are heterogeneous , in that the data compression ratios (in terms 

of size reduction), compression times, and compression costs (in 

terms of energy consumption) on different sensors are different. 

Let the set of m heterogeneous sensors be denoted as P = 

{ P 1 , P 2 , . . . , P m 

} and the single base station denoted as S . We call the 

data collected by the sensor P i also as the data point P i ( Table 1 ). 

The original size of the data point P i is αi , for each i = 1 , 2 , . . . , m ; 

if the data point P i is compressed, the size reduces to β i ( ≤αi ), 

the required compression time is r i , and the compression cost is f i , 

where all these parameters are non-negative integers. We assume 

without loss of generality that the sensor P i has sufficient energy 

to compress its collected data, as otherwise it would be deprived of 

the option to compress the data. Consequently, the release time of 

the data point P i , that is the time the data point is ready for trans- 

fer, is 0 if not compressed, or otherwise is r i . We note that when 

the sensors are homogeneous as discussed in Berli ́nska (2015) , the 

ratios β i / αi , r i / αi and f i / αi can be assumed sensor-independent, i.e. , 

they are constants for all sensors. For the data transfer time, the 

data point P i needs time C i for transferring one unit of its data to 

the base station S , where C i is also assumed a non-negative inte- 

ger, for each i = 1 , 2 , . . . , m . In general, these C i ’s are different due 

to the different specs of the sensors and the varying distances be- 

tween the sensors and the base station. 

The bi-objective communication scheduling problem reduces to 

two mono-objective optimization problems, formally, as follows: 

Problem Compr-OptF : Given m heterogeneous sensors (data 

points) { P i } 1 ≤ i ≤ m 

and their parameters ( αi , β i , r i , f i , C i ) 1 ≤ i ≤ m 

, and 

a positive integer T representing the time bound, find a subset 

of data points to compress such that the total data compression 

cost is minimized and the data transfer completion time (that is, 

makespan ) is no greater than T . 

Problem Compr-OptT : Given m heterogeneous sensors (data 

points) { P i } 1 ≤ i ≤ m 

and their parameters ( αi , β i , r i , f i , C i ) 1 ≤ i ≤ m 

, and 

a positive integer F representing the compression cost budget, find 

a subset of data points to compress such that the makespan is 

minimized and the total data compression cost is within the bud- 

get F . 

It is easy to observe that the central task in these optimization 

problems is to determine an optimal subset of data points to com- 

press. In fact, when such a subset of data points to be compressed 

is determined, then obviously the compression cost is known, so 

is the minimum makespan. The latter conclusion holds because, 

when the subset is determined, the size and the release time of 

each data point are known and the remaining problem is to trans- 

fer all the data points to the base station one by one; by treating 

the data transfer phase as a single machine and the data points as 

the jobs to be processed on the single machine, the problem re- 

duces to “scheduling on a single machine with job release times to 

minimize the makespan ” (denoted as “1 | r j | C max ” in three-field no- 

tation ( Graham, Lawler, Lenstra, & Kan, 1979 ), where r j is the re- 

lease time of the job P j ), for which the earliest release date (ERD) 
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