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We study algorithms for allocating a set of indivisible items to two players who rank them differently. We 

compare eleven such algorithms, mostly taken from the literature, in a computational study, evaluating 

them according to fairness and efficiency criteria that are based on ordinal preferences as well as Borda 

counts. Our study is exhaustive in that, for every possible instance of up to twelve items, we compare 

the output of each algorithm to all possible allocations. We thus can search for “good” allocations that 

no algorithm finds. Overall, the algorithms do very well on ordinal properties but fall short on Borda 

properties. We also discuss the similarity of algorithms and suggest how they can be usefully combined. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Fair allocation of resources is a central problem of collective 

decision-making. The study of fairness and efficiency criteria that 

reflect actors’ preferences has motivated the development of algo- 

rithms to generate allocations that achieve these properties. It is 

not surprising that fair division problems have a pivotal position 

in the collective-choice literature ( Klamler, 2010; Thomson, 2016; 

Young, 1994 ). 

Fair division problems are difficult enough when resources are 

infinitely divisible, but become even more challenging when the 

resource to be allocated consists of a (finite) set of indivisible items. 

Each player is to receive a subset of the items, often called a 

“bundle”; allocations must be evaluated based on players’ pref- 

erences over bundles. The simplest approach is to begin with a 

player’s preference over individual items (e.g., a ranking) and “lift”

( Bouveret, Chevaleyre, & Maudet, 2016 ) it to the level of bundles. 

To illustrate how difficult fair division problems can be, assume 

that utilities are linear (so that there are no synergies, positive or 

negative, among the objects), and consider the “Santa Claus prob- 

lem” — to distribute a finite number of gifts to a finite number of 

children so as to maximize the utility of the unhappiest child. This 

problem is NP-hard, despite including only one fairness criterion. 

In fact, it cannot even be approximated efficiently ( Bansal & Sviri- 

denko, 2006 ). 

Fair division of indivisible items is an important research topic, 

partly because sometimes no “fair” allocation exists, and partly be- 
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cause simple algorithms sometimes fail to find those that do. We 

treat fair division as a problem of social choice, not game theory; 

in other words, we assume that any algorithm can access true pref- 

erence information, and do not account for individuals’ incentives 

to conceal or distort that information. In fact, many social choice 

algorithms are available. On the one hand, there are plausible, 

common-sense approaches, such as asking players, in sequence, to 

claim their most preferred unallocated item, which mimics the “I 

cut, you choose” cake-cutting procedure. On the other hand, the 

recent academic literature proposes many algorithms that specif- 

ically aim to find allocations satisfying various fairness and effi- 

ciency criteria (e.g., Brams, Kilgour, & Klamler, 2012; 2015; 2017; 

Darmann & Klamler, 2016; Pruhs & Woeginger, 2012 ). 

The aim of this paper is to compare fair-division algorithms for 

indivisible items. We draw from across the literature, and adopt its 

most common restrictions, considering only algorithms that pro- 

duce balanced allocations to two individuals. An allocation is bal- 

anced if each individual receives the same number of items. Bal- 

anced allocations satisfy a very weak notion of fairness, one that 

can be applied without preference information. The two-player 

setting is a sub-problem with practical implications, for example 

the division of marital property in a divorce. Good algorithms for 

two-person balanced allocations may also provide important clues 

about how to approach more general problems. 

We further restrict our focus to algorithms that consider each 

item only once, immediately assigning it to one player or the other. 

We do not include algorithms that leave a “Contested Pile” of unal- 

located items to be distributed in a second stage, perhaps by a dif- 

ferent algorithm. Our algorithms range from “naive” methods to re- 

cent proposals in the academic literature. We compare algorithms 

by applying various criteria measuring efficiency and fairness to 
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the allocations they generate. All of our criteria are based on or- 

dinal preferences, including some criteria based on Borda scores, 

which can be thought of as a crude approximation to cardinal util- 

ities ( Darmann & Klamler, 2016 ). 

Our computational study is, to the best of our knowledge, the 

first of its kind. Randomized computational studies have been car- 

ried out in other fields, for example to assess voting rules ( Laslier, 

2010; Merrill, 1988 ). Our approach is not only to compare algo- 

rithms to each other, but also to assess how well they do as a 

group. For each problem size, we consider all possible profiles of 

individual rankings, enabling us to make exact statements about 

how often an event occurs, rather than the probabilistic statements 

that would follow from a sampling approach. For each problem, 

we consider all allocations that each algorithm might find. (All 

of our algorithms require at least one arbitrary choice, such as 

which player acts first.) We assess an algorithm on the quality of 

all of the allocations it produces, keeping track of the frequency 

of branching and the number of allocations generated on average 

and in extreme cases. We see these characteristics of an algorithm 

as highly relevant in practical problems. Also, for each problem, 

we find all possible balanced allocations; knowing all “good” al- 

locations, we can determine how many each algorithm finds, and 

whether there are interesting allocations not found by any algo- 

rithm. 

In order to analyze all possible preference profiles for each 

problem size, we restricted our computational study to problems 

of up to 12 items. Although this size restriction is quite severe, we 

believe that the analysis of small problems is valuable. First, we 

are able to demonstrate clear differences among algorithms even 

within this range. Second, in smaller problems, the link from al- 

gorithm characteristics to effects often becomes clear. Third, the 

effects of indivisibility seem stronger when the number of items 

is small, suggesting that the interesting features of algorithms are 

most likely to be manifest in small problems. Finally, many real- 

world problems (such as the allocation of cabinet seats to political 

parties) involve only a small number of items. 

The paper proceeds with a discussion of the fairness and ef- 

ficiency properties of allocations used in comparing algorithms 

( Section 2 ), followed by a description of the algorithms and their 

implementation ( Section 3 ). Then ( Section 4 ) we elaborate on ex- 

actly how we compare algorithms, and formulate the detailed re- 

search questions we want to study. After presenting our results in 

detail ( Section 5 ) we draw some conclusions ( Section 6 ), including 

some ideas about important questions that remain unanswered. 

2. Properties of allocations 

We consider a set S of | S| = N items to be allocated to play- 

ers A and B . Let M = { A, B } . For a player m ∈ M , denote the oppo- 

nent of m by m . An allocation X = (X A , X B ) assigns subsets X A ⊆S 

to A and X B ⊆S to B , provided X A ∩ X B = ∅ and X A ∪ X B = S. We 

assume throughout that N is even and consider only allocations 

X = (X A , X B ) that are balanced in that | X A | = | X B | = N/ 2 . Denote the 

set of all balanced allocations of S by A . 

To evaluate allocations, one needs a model of players’ prefer- 

ences over sets of items. We focus on preferences on subsets of S 

that can be obtained from (strict) rankings of S . Denote player m ’s 

ranking of items by �m 

. We construct a partial ordering of sub- 

sets of S proposed by Brams et al. (2012) . Let X ⊆S and Y ⊆S satisfy 

| X| = | Y | . Then X is ordinally less than Y for player m , denoted by 

X ≺o 
m 

Y, if there exists an injective mapping f : Y → X so that ∀ y ∈ Y : 

y �m 

f ( y ). If X ≺o 
m 

Y, then Y �o 
m 

X, and we say that Y is ordinally 

more than X . Based on these relations, we define several criteria 

for (balanced) allocations. 

Pareto optimality is an efficiency property. An allocation X is 

Pareto optimal (PO) if there is no other allocation Y such that, for 

both players, the set of items received under X is ordinally less 

than the set of items received under Y , i.e. allocation X is PO iff

� ∃ Y ∈ A : ∀ m ∈ M : Y m 

�o 
m 

X m 

(1) 

Note that we define Pareto optimality as the absence of strict dom- 

inance. We simplify the usual treatment that allows some player to 

be indifferent between its two allocations because underlying or- 

derings are strict; thus, if all items are allocated, any change in the 

allocation to one player also changes the allocation to the other, 

making subset indifference impossible. 

The second property we consider is envy-freeness (EF) . An allo- 

cation X is envy-free if each player prefers its set to the comple- 

ment, the set allocated to the opponent ( Klamler, 2010 ). An alloca- 

tion X is EF iff

∀ m ∈ M : X m 

�o 
m 

X m 

(2) 

A third criterion of fairness for allocations is the max-min prop- 

erty. An allocation is max-min (MM) iff the maximum rank of 

any item allocated to a player in that player’s ranking is mini- 

mal ( Brams, Kilgour, & Klamler, 2017 ). Denote by r m 

(i ) = |{ x ∈ S : 

x � i }| + 1 the rank of item i for player m . The most preferred item 

has rank 1 and the least preferred item rank N . An allocation X is 

MM iff

max 
m ∈ M 

max 
i ∈ X m 

r m 

(i ) = min 

Y ∈A 
max 
m ∈ M 

max 
i ∈ Y m 

r m 

(i ) (3) 

The three properties just defined are commonly used in the lit- 

erature on fair division of indivisible items—in fact, many of the 

algorithms we study were specifically designed to fulfill some of 

them—but they are not without drawbacks. Most notably, ordinally 

less is not a complete relation on the set of all (balanced) alloca- 

tions. For any property defined as the non-existence of a related 

allocation (e.g., an allocation is Pareto optimal if there exists no 

other allocation providing preferred subsets to both players), one 

could argue that a complete relation would be more demanding 

because it offers more potential violations. In other words, as a ba- 

sis for assessment, an incomplete relation is rather weak. 

We therefore complement properties based on the ordinally less 

relation with properties based on Borda scores. Recall that player 

m ’s ranking of item i ∈ S is r m 

( i ). The Borda score of a set X m 

⊆S for 

player m is 

B m 

(X m 

) = 

∑ 

i ∈ X m 
(N + 1 − r m 

(i )) . (4) 

When only ordinal information is available, Borda scores can be 

regarded as an approximation to cardinal utilities ( Darmann and 

Klamler, 2016 , p. 545), and provide a complete preorder on sub- 

sets. The ordinally less relation obviously implies the correspond- 

ing ranking of Borda scores. 

Based on Borda scores, we define four properties of allocations 

that are analogous to properties based on the ordinally less rela- 

tion. The first property transfers Pareto optimality to Borda scores. 

A balanced allocation X is Borda Pareto optimal (BP) iff

� ∃ Y ∈ A : ∀ m ∈ M : B m 

(Y m 

) ≥ B m 

(X m 

) ∧ ∃ n ∈ M : B n (Y n ) > B n (X n ) 

(5) 

Using Borda scores, we can also apply the utilitarian concept of 

efficiency as maximization of the sum of scores ( Bertsimas, Farias, 

& Trichakis, 2012 ). A balanced allocation X satisfies maximal Borda 

sum (BS) iff
∑ 

m ∈ M 

B m 

(X m 

) = max 
Y ∈A 

∑ 

m ∈ M 

B m 

(Y m 

) (6) 

Because BS clearly implies BP , we concentrate on the BS property. 

When cardinal evaluations are available, the concept of envy- 

freeness can be applied by requiring that no player assigns a 
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