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a b s t r a c t 

We consider the problem of determining the feasibility of systems when the performance measures in 

stochastic constraints need to be evaluated via simulation. We develop a new procedure, namely the 

adaptive feasibility check procedure. Specifically, the procedure uses an existing feasibility check proce- 

dure iteratively as its subroutine with a decreasing sequence of tolerance levels. Our procedure is de- 

signed to return the set of strictly feasible systems with at least a prespecified probability. The validity 

and efficiency of the procedure are investigated through both analytical and experimental results. The 

procedure is also tested using numerical examples. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Ranking and selection (R&S) procedures have been actively used 

for finding the best system among a finite number of simulated 

systems with some statistical guarantees. In this case, the best sys- 

tem represents the one with the best expected primary perfor- 

mance measure when the measure can be estimated by stochastic 

simulation. General approaches to R&S appear in a few different 

forms, such as the fully sequential indifference zone (IZ) frame- 

works ( Kim & Nelson, 2006 ), the optimal computing budget allo- 

cation (OCBA) frameworks ( Chen, Lin, Yücesan, & Chick, 20 0 0 ), and 

the Bayesian frameworks ( Chick, 2006; Frazier & Kazachkov, 2011 ). 

Recently, scholars and practitioners have been interested in 

R&S problems in the presence of stochastic constraints. Hunter 

and Pasupathy (2013) , Lee, Pujowidianto, Li, Chen, and Yap (2012) , 

and Pasupathy, Hunter, Pujowidianto, Lee, and Chen (2015) provide 

OCBA frameworks that allocate a finite sampling budget to max- 

imize the probability of correctly selecting the best feasible 

system when stochastic constraints exist. Gao and Chen 

(2017a) suggest a feasibility determination procedure for mul- 

tiple stochastic constraints based on the OCBA framework and Gao 

and Chen (2017b) combine the procedure with an optimization 

via simulation algorithm to find the best feasible system among a 

finite number of systems. In addition, the normality assumption 

of the R&S has been relaxed through the OCBA framework based 
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on the large deviation theory ( Szechtman & Yücesan, 2008 ) and a 

Bayesian approach ( Szechtman & Yücesan, 2016 ). 

Using fully sequential IZ frameworks, Batur and Kim (2010) 

suggest feasibility check procedures (FCPs) for finding a set of fea- 

sible or near feasible systems regarding multiple stochastic con- 

straints. The procedures are used as a subroutine for selecting 

the best system that satisfies constraints on one or more sec- 

ondary performance measures. Andradóttir and Kim (2010) and 

Healey, Andradóttir, and Kim (2013) propose statistically valid pro- 

cedures that select the best feasible system with at least a prespec- 

ified probability in the presence of a single stochastic constraint. 

The procedures have been improved in Healey, Andradóttir, and 

Kim (2014) for selecting the best feasible system under multiple 

stochastic constraints. In this paper, we focus on the fully sequen- 

tial IZ framework for constrained R&S. 

The fully sequential FCPs in Batur and Kim (2010) have been 

also used to find a set of feasible systems during or after run- 

ning optimization algorithms when the number of systems is large. 

Ahmed and Alkhamis (2009) find the optimal number of doctors, 

lab technicians, and nurses to operate an emergency medical cen- 

ter by adopting a two-phase approach. In this approach, the first 

phase includes the FCP in Batur and Kim (2010) to find a set of 

feasible or near feasible systems and the second phase includes an 

optimization algorithm proposed in Alkhamis and Ahmed (2004) . 

Tsai and Fu (2014) combine the FCP with a genetic algorithm to 

solve a discrete optimization via simulation problem with a sin- 

gle stochastic constraint. In addition, Tsai and Liu (2015) and Tsai 

and Chen (2016) propose simulation optimization frameworks us- 

ing the FCP to solve some inventory management problems. 
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Although the FCP is useful itself or within constrained R&S 

frameworks and optimization algorithms, the procedure requires 

users to select a proper tolerance level, which is very important in 

decision-making. If the tolerance level is too small, computational 

costs for feasibility checks are unnecessarily high. On the other 

hand, if the tolerance level is too large, the quality of feasibility de- 

cisions could be compromised, and the user must allow undesired 

and unpredictable decisions in which a truly infeasible system is 

declared as feasible or vice versa with high chances. Declaring a 

truly infeasible system as feasible may lead to a critical situation 

when the user considers a hard constraint which must be satisfied. 

From the viewpoint of optimization, since the constraints almost 

always hit their limits to optimize the objective, the feasibility de- 

cisions of near feasible systems make a difference in stochastically 

constrained optimization problems ( Park & Kim, 2015 ). 

Nevertheless, selecting a proper tolerance level is difficult and 

time-consuming. In practice, mean and variance configurations are 

generally unknown, and thus the user needs to run the FCP several 

times with different values of the tolerance levels. As the num- 

ber of constraints increases, the number of replications for run- 

ning the FCP significantly increases and therefore, finding proper 

tolerance levels with multiple constraints becomes more inconve- 

nient and time-consuming. Even though it is possible to figure out 

proper values of tolerance levels, it is difficult to statistically guar- 

antee that the FCP returns a set of strictly feasible systems with a 

prespecified probability. In this paper, we propose a new FCP that 

is self-adjusting the tolerance level for each system and each con- 

straint. The new procedure is designed to provide a set of feasible 

systems regarding multiple stochastic constraints while guarantee- 

ing a predetermined probability of a correct decision. See Lee, Park, 

Park, and Park (2017) for a preliminary work on the new procedure 

applied to find the optimal number of medical staffs in an emer- 

gency department. 

This paper is organized as follows: In Section 2 , we explain 

our problem and introduce the existing FCPs as background. 

Section 3 provides a generic description of the new FCP and its 

statistical guarantees with proofs. Efficiency and effectiveness of 

the new procedure are examined analytically and empirically in 

Section 4 . Section 5 concludes the paper. 

2. Background 

In this section, we formulate our problem, provide notations 

and assumptions, and introduce existing procedures that are used 

for determining a set of feasible or near feasible systems with sta- 

tistical guarantees. 

2.1. Problem formulation 

We consider k systems whose performance measures can be 

observed through stochastic simulation. Let � denote a set of all 

systems (i.e., � = { 1 , 2 , . . . , k } ) and Y i � j for j = 1 , 2 , . . . denote the 

j th simulation observation associated with the � th performance 

measure of system i . For any given system i and performance mea- 

sure � , y i � denotes the expectation of Y i � j (i.e., y i� = E [ Y i� j ] ) and σ 2 
i� 

denotes the variance of Y i � j (i.e., σ 2 
i� 

= Var [ Y i� j ] ). Then our problem 

is determining the set of strictly feasible systems: 

ϒ := { i ∈ � | y i� < q � , � = 1 , 2 , . . . , s } , (1) 

where q � , � = 1 , 2 , . . . , s, are threshold constants associated with 

the � th performance measure. 

We make the following assumption throughout the paper. 

Assumption 1. For each i = 1 , 2 , . . . , k, ⎡ 

⎢ ⎢ ⎣ 

Y i 1 j 
Y i 2 j 
. . . 
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y i 1 
y i 2 
. . . 
y is 

⎤ 
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, �i 

⎞ 
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, 

where 
iid ∼ denotes independent and identically distributed, MN s de- 

notes the s −dimensional multivariate normal distribution, and �i 

is the s × s covariance matrix of the vector (Y i 1 j , Y i 2 j , . . . , Y is j ) . 

Note that simulation observations are often assumed to be nor- 

mally distributed in R&S problems. In practice, the normality as- 

sumption can be justified if Y i � j values are obtained by either 

within-replication averages or batch means. It is well-known that 

using common random numbers (CRN) often improves the effi- 

ciency of statistical comparison procedures, but it is not beneficial 

for FCPs, as mentioned in Batur and Kim (2010) . Nevertheless, we 

consider the case of CRN as well as the independent case because 

the proposed FCP in this paper can be combined with procedures 

for selecting the best system such as the fully sequential procedure 

in Kim and Nelson (2001) . 

Handling boundary systems is one of the important issues in 

stochastically constrained optimization via simulation. Park and 

Kim (2015) develop a new penalty method, namely Penalty Func- 

tion with Memory, that can theoretically handle such systems with 

probability one if we are allowed to use an infinite number of ob- 

servations. Nevertheless, if only finite observations are available, 

it is extremely difficult to guarantee at least a prespecified prob- 

ability of correctly determining feasibility of boundary systems be- 

cause of estimation errors. The purpose of this paper is to design 

a procedure to find the set of feasible systems regarding stochas- 

tic constraints with a finite number of observations, and thus we 

consider the following assumption regarding boundary systems 

throughout the paper. 

Assumption 2. For each i = 1 , 2 , . . . , k and � = 1 , 2 , . . . , s, there is 

no system i and constraint � such that y i� = E [ Y i� j ] = q � . 

2.2. Existing feasibility check procedures 

In this section, we introduce two fully sequential procedures, 

denoted by F 

I 
B and F 

I 
A 
, of Batur and Kim (2010) . These two pro- 

cedures are originally designed not to find a set of strictly feasi- 

ble systems (i.e., the set ϒ of (1) ), but to find a set of feasible or 

near feasible systems. Specifically, F 

I 
B and F 

I 
A 

adopt a user-specified 

parameter, which is a positive real number, namely the tolerance 

level for each constraint. Let ε� denote the tolerance level corre- 

sponding to constraint � , then we can define the following three 

sets as in Batur and Kim (2010) : 

D ≡ { i ∈ � | y i� ≤ q � − ε� , for � = 1 , 2 , . . . , s } ;
A ≡ { i ∈ � | y i� < q � + ε� , for � = 1 , 2 , . . . , s } \ D ; and 

U ≡ ∪ 

s 
� =1 { i ∈ � | q � + ε� ≤ y i� } . 

The systems in the sets D , A , and U are called desirable, accept- 

able, and unacceptable systems, respectively. Any desirable system 

is clearly feasible regarding constraints and thus D ⊆ϒ . Any unac- 

ceptable system is clearly infeasible regarding constraints and thus 

U ⊆( ��ϒ). The set of acceptable systems could include both fea- 

sible and infeasible systems. That is, an acceptable system can be 

declared as feasible or infeasible by the existing FCPs regardless 

of the true feasibility of the system. Fig. 1 demonstrates regions 

of the desirable, acceptable, and unacceptable systems with a sin- 

gle stochastic constraint. Under existence of the tolerance levels, 

F 

I 
B 

and F 

I 
A 

are guaranteed to return a set denoted by F , which in- 

cludes the set D and is included in the set D ∪ A (i.e., D ⊆F ⊆( D ∪ A )), 

within a user-specified confidence level. 
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